Skip to main content
Log in

Stable multicopy integration of vector sequences inHansenula polymorpha

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Plasmids without an origin of replication, but bearing theURA3 gene ofSaccharomyces cerevisiae as a selective marker for transformation, are shown to replicate autonomously inHansenula polymorpha, indicating that parts of theS. cerevisiae URA3 gene can fulfil an autonomous replication and stabilization function inH. polymorpha. Such plasmids, replicated in low copy number in monomeric conformation, could be rescued inE. coli, and showed a low mitotic stability under selective and non-selective conditions. Selective propagation of such transformants, however, led to the integration of plasmid sequences into theH. polymorpha genome. The integration event usually occurred in high copy number (approx. 30–50) at a single non-homologous site of the genome. The plasmid sequences were found to be present in tandem array and stable under non-selective conditions. It contrast, the use of homologousURA3 gene under similar conditions led to low-copy-number transformants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berardi E, Thomas DY (1990) An effective transformation method forHansenula polymorpha. Curr Genet 18:169–170

    Article  CAS  Google Scholar 

  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW, Crosa JH, Falkow S (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113

    Article  CAS  Google Scholar 

  • Broach JR (1983) Construction of high copy number yeast vectors using 2 mm circle sequences. Methods Enzymol 101:307–325

    CAS  Google Scholar 

  • Chen XJ, Bianchi MM, Suda K, Fukuhara H (1989) The host range of the pKD1-derived plasmids in yeast. Curr Genet 16: 95–98

    Article  CAS  Google Scholar 

  • Clare JJ, Rayment FB, Ballantine SP, Sreekrishna K, Romanos MA (1991) High-level expression of tetanus toxin fragment C inPichia pastoris strains containing multiple tandem integrations of the gene. Biotechnology 9:455–460

    Article  CAS  Google Scholar 

  • Cregg JM, Barringer KJ, Hessler AY, Madden KR (1985)Pichia pastoris as a host system for transformations. Mol Cell Biol 5:3376–3385

    CAS  Google Scholar 

  • Davidow LS, Apostolakos D, O'Donnell MM, Proctor AR, Ogrydziak DM, Wing RA, Stasko I, DeZeeuw JR (1985) Integrative transformation of the yeastYarrowia lipolytica. Curr Genet 10:39–48

    Article  CAS  Google Scholar 

  • Davis RW, Thomas M, Cameron J, St John TP, Scherer S, Padgett RA (1980) Rapid DNA isolations for enzymatic and hybridization analysis. Methods Enzymol 65:404–411

    CAS  Google Scholar 

  • Dohmen RJ, Strasser AWM, Höner CB, Hollenberg CP (1991) An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast 7:691–692

    Article  CAS  Google Scholar 

  • Erhart E, Hollenberg CP (1983) The presence of a defective LEU2 gene on 2μ DNA recombinant plasmids ofSaccharomyces cerevisiae is responsible for curing and high copy number. J Bacteriol 156:625–635

    CAS  Google Scholar 

  • Faber KN, Swaving GJ, Faber F, Ab G, Harder W, Veenhuis M, Haima P (1992) Chromosomal targeting of replicating plasmids in the yeastHansenula polymorpha. J Gen Microbiol 138:2405–2416

    CAS  Google Scholar 

  • Fellinger AJ, Verbakel JMA, Veale RA, Sudbery PE, Bom IJ, Overbeeke N, Verrips CT (1991) Expression of the α-galactosidase fromCyamopsis tetragonoloba (Guar) byHansenula polymorpha. Yeast 7:463–473

    Article  CAS  Google Scholar 

  • Gellissen G, Janowicz ZA, Merckelbach A, Piontek M, Keup P, Weydemann U, Hollenberg CP, Strasser AWM (1991) Heterologous gene expression inHansenula polymorpha: efficient secretion of glucoamylase. Biotechnology 9:291–295

    Article  CAS  Google Scholar 

  • Gleeson MA, Sudbery PE (1988) The methylotrophic yeast. Yeast 4:1–15

    Article  CAS  Google Scholar 

  • Gleeson MA, Ortori GS, Sudbery PE (1986) Transformation of the methylotrophic yeastHansenula polymorpha. J Gen Microbiol 132:3459–3465

    CAS  Google Scholar 

  • Gödecke S, Eckart M, Janowicz ZA, Hollenberg CP (1994) Identification of sequences responsible for transcriptional regulation of the strongly expressed methanol oxidase-encoding gene inHansenula polymorpha. Gene 139:35–42

    Article  Google Scholar 

  • Hanahan D (1985) Techniques for transformation ofE. coli. In: Glover DM (ed) DNA cloning, a practical approach. IRL, Oxford, pp 109–125

    Google Scholar 

  • Hollenberg CP, Janowicz ZA (1987) DNA molecules coding for FMDH control region, European patent application, EPA no. 0299108

  • Janowicz ZA, Melber K, Merckelbach A, Jacobs E, Harford N, Comberbach M, Hollenberg CP (1991) Simultaneous expression of the S and L surface antigens of hepatitis B, and formation of mixed particles in the methylotrophic yeast,Hansenula polymorpha. Yeast 7:431–443

    Article  CAS  Google Scholar 

  • Klebe RJ, Harriss JV, Sharp D, Douglas MG (1983) A general method for polyethylene-glycol-induced transformation of bacteria and yeast. Gene 25:333–341

    Article  CAS  Google Scholar 

  • Ledeboer AM, Edens L, Maat J, Visser C, Bos JW, Verrips CT, Janowicz Z, Eckart M, Roggenkamp R, Hollenberg CP (1985) Molecular cloning and characterization of a gene coding for methanol oxidase inHansenula polymorpha. Nucleic Acids Res 13:3063–3082

    CAS  Google Scholar 

  • Merckelbach A, Gödecke S, Janowicz ZA, Hollenberg CP (1993) Cloning and sequencing of theura3 locus of the methylotrophic yeastHansenula polymorpha and its use for the generation of a deletion by gene replacement. Appl Microbiol Biotechnol 40:361–364

    Article  CAS  Google Scholar 

  • Orr-Weaver TL, Szostak JW (1983) Multiple, tandem plasmid integration inSaccharomyces cerevisiae. Mol Cell Biol 3:747–749

    CAS  Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1983) Genetic applications of yeast transformation with linear and gapped plasmids. Methods Enzymol 101:228–245

    Article  CAS  Google Scholar 

  • Roggenkamp R, Hansen H, Eckart M, Janowicz Z, Hollenberg CP (1986) Transformation of the methylotrophic yeastHansenula polymorpha by autonomous replication and integration vectors. Mol Gen Genet 202:302–308

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Siekstra LN, Verbakel JMA, Verrips CT (1991) Optimisation of a host/vector system for heterologous gene expression byHansenula polymorpha. Curr Genet 19:81–87

    Article  Google Scholar 

  • Stinchcomb DT, Thomas M, Kelly J, Selker E, Davis RW (1980) Eukaryotic DNA segments capable of autonomous replication in yeast. Proc Natl Acad Sci USA 77:4559–4563

    Article  CAS  Google Scholar 

  • Tikhomirova LP, Ikonomova RN, Kuznetsova EN (1986) Evidence for autonomous replication and stabilization of recombinant plasmids in the transformants of yeastHansenula polymorpha. Curr Genet 10:741–747

    Article  CAS  Google Scholar 

  • Veale RA, Giuseppin MLF, Van Eijk HMJ, Sudbery PE, Verrips CT (1992) Development of a strain ofHansenula polymorpha for the efficient expression of guar α-galactosidase. Yeast 8:361–372

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatzke, R., Weydemann, U., Janowicz, Z.A. et al. Stable multicopy integration of vector sequences inHansenula polymorpha . Appl Microbiol Biotechnol 43, 844–849 (1995). https://doi.org/10.1007/BF02431917

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02431917

Keywords

Navigation