Skip to main content
Log in

Integrative transformation of the yeast Yarrowia lipolytica

  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

We have derived a DNA-mediated transformation system for the yeast Yarrowia lipolytica based on the lithium acetate method Ito et al. (1983) developed for Saccharomyces cerevisiae. The first plasmid used, pLD25, contains the Y. lipolytica LEU2 gene (coding for the enzyme beta-isopropylmalate dehydrogenase, EC 1.1.1.85) on a 6.6 kb piece of DNA inserted into pBR322. The recipient strain ATCC 20688 contains the rarely reverting mutation leu2-35. The Y. lipolytica LEU2 gene complements leuB mutants in Escherichia coli and leu2 mutants in S. cerevisiae and it also hybridizes weakly to the S. cerevisiae LEU2 gene. Y. lipolytica transformation frequencies of up to 104 Leu+ cells per microgram of DNA, per 108 viable cells have been obtained from plasmds linearized with restriction enzymes. The more than 100-fold increase in transformation frequency obtained by using linearized DNA instead of intact plasmid resembles the situation seen in S. cerevisiae for site-directed integrative transformation (Orr-Weaver et al. 1981). The transformants were stable when grown in non-selective medium. We found that pLD25 integrated at the leu2 region when either linear or intact plasmid was used to transform Y. lipolytica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreadis A, Hsu Y-P, Kohlaw GB, Schimmel P (1982) Cell 31:319–325

    Google Scholar 

  • Andreadis A, Hsu Y-P, Hermodson M, Kohlaw G, Schimmel P (1984) J Biol Chem 259:8059–8062

    Google Scholar 

  • Bassel JB, Mortimer RK (1982) Curr Genet 5:77–88

    Google Scholar 

  • Beach D, Nurse P (1981) Nature (London) 290:140–142

    Google Scholar 

  • Beggs JD (1978) Nature (London) 275:104–108

    Google Scholar 

  • Botstein D, Falco SC, Stewart SE, Brennan M, Scherer S, Stinchcomb DT, Struhl K, Davis RW (1979) Gene 8:17–24

    Google Scholar 

  • Brake AJ, Merryweather JP, Coit DG, Heberlein UA, Masiarz FR, Mullenbach GT, Urdea MS, Balenzuela P, Barr PJ (1984) Proc Natl Acad Sci USA 81:4642–4646

    Google Scholar 

  • Casadaban MJ, Cohen SN (1980) J Mol Biol 138:179–207

    Google Scholar 

  • Clark AJ, Maas WK, Low B (1969) Mol Gen Genet 105:1–15

    Google Scholar 

  • Dagert M, Ehrlich SD (1979) Gene 6:23–28

    Google Scholar 

  • Das S, Hollenberg CP (1982) Curr Genet 6:123–128

    Google Scholar 

  • Das S, Kellermann E, Hollenberg CP (1984) J Bacteriol 158:1165–1167

    Google Scholar 

  • DeZeeuw JR, Stasko I (1983) USA Patent 4407953

  • DeZeeuw JR, Tynan EJ (1973a) USA Patent 3736229

  • DeZeeuw JR, Tynan EJ (1973b) USA Patent 3756917

  • Heslot H, Gaillardin CM, Beckerich JM, Fournier P (1979) Control of lysine metabolism in the petroleum yeast Saccharomycopsis lipolytica. In: Sebek OK, Laskin AL (eds) Genetics of industrial microorganisms. American Society for Microbiology, Washington, DC, pp 54–60

    Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933

    Google Scholar 

  • Hitzeman RA, Leung DW, Perry LJ, Kohr WJ, Levine HL, Goeddel DV (1983) Science 219:620–625

    Google Scholar 

  • Holmes DS, Quigley M (1981) Anal Biochem 114:193–197

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168

    Google Scholar 

  • Low BK (1973) J Bacteriol 113:798–812

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Nasmyth K, Reed S (1980) Proc Natl Acad Sci USA 77:2119–2123

    Google Scholar 

  • Ogrydziak DM, Scharf SJ (1982) J Gen Microbiol 128:1225–1234

    Google Scholar 

  • Ogrydziak D, Bassel J, Contopoulou R, Mortimer R (1978) Mol Gen Genet 163:229–239

    Google Scholar 

  • Ogrydziak DM, Bassel J, Mortimer R (1982) Mol Gen Genet 188:179–183

    Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RI (1981) Proc Natl Acad Sci USA 78:6354–6358

    Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1983) Methods Enzymol 101:228–245

    Google Scholar 

  • Petes TD (1980) Cell 19:765–774

    Google Scholar 

  • Ratzkin B, Carbon J (1977) Proc Natl Acad Sci USA 74:487–491

    Google Scholar 

  • Rothstein RJ (1983) Methods Enzymol 101:202–211

    Google Scholar 

  • Seed B, Parker RC, Davidson N (1982) Gene 19:201–209

    Google Scholar 

  • Shah DN, Purohit AP, Sriprakash RS (1982) Enzyme Microbiol Technol 4:116–117

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1981) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Struhl K, Stinchchomb DT, Sherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039

    Google Scholar 

  • Stüber D, Bujard H (1981) Proc Natl Acad Sci USA 78:167–171

    Google Scholar 

  • Tobe S, Takami T, Ikeda S, Mitsugi K (1976) Agric Biol Chem 40:1087–1092

    Google Scholar 

  • Yang RC-A, Lis J, Wu R (1979) Methods Enzymol 68:176–182

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidow, L.S., Apostolakos, D., O'Donnell, M.M. et al. Integrative transformation of the yeast Yarrowia lipolytica . Curr Genet 10, 39–48 (1985). https://doi.org/10.1007/BF00418492

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00418492

Key words

Navigation