Skip to main content
Log in

Transformation of the methylotrophic yeast Hansenula polymorpha by autonomous replication and integration vectors

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A high frequency transformation system for the methylotrophic yeast Hansenula polymorpha has been developed. This system depends on complementation of isolated uracil auxotrophs by the URA3 gene of Saccharomyces cerevisiae. Maintenance of the uracil prototrophy is based on integration of plasmid YIp5 at random sites within the H. polymorpha genome and on autonomously replicating plasmids containing ARS1 of S. cerevisiae or related sequences cloned from the host DNA. The sequence of one autonomously replicating sequence (HARS1) from H. polymorpha has been determined showing an AT-rich region of 9 bp with some similarity to the consensus sequence of known eukaryotic replication origins. Mitotic loss of autonomously replicating sequences is high; selection for stable uracil prototrophs yields multiple tandem arrangement of the transformed DNA with no detectable loss of the phenotype on non-selective medium. These features offer the possibility for extensive gene expression in H. polymorpha.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beach D, Nurse P (1981) High frequency transformation of the fission yeast Schizosaccharomyces pombe. Nature 290:139–142

    Google Scholar 

  • Beggs JD (1978) Transformation of yeast by a replicating hybrid plasmid. Nature 275:104–109

    Google Scholar 

  • Boeke JD, Lacroute F, Fink GR (1984) A positive selection for mutants lacking orotidine 5′-phosphate decarboxylase activity in yeast. Mol Gen Genet 197:345–346

    Google Scholar 

  • Broach JR, Li YY, Feldmann J, Jayaram M, Abraham J, Nasmyth KA, Hicks JB (1982) Localization and sequence analysis of yeast origins of replication. Cold Spring Harbor Symp Quant Biol 47:1165–1173

    Google Scholar 

  • Carlson M, Botstein D (1982) Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell 28:145–154

    Google Scholar 

  • Das S, Hollenberg CP (1982) A high frequency transformation system for the yeast Kluyveromyces lactis. Curr Genet 6:123–128

    Google Scholar 

  • Das S, Kellermann E, Hollenberg CP (1984) Transformation of Kluyveromyces fragilis. J Bacteriol 158:1165–1167

    Google Scholar 

  • Dijken JP van, Veehuis M, Kreger van Rij NJW, Harder W (1975) Microbodies in methanol utilizing yeasts. Arch Microbiol 102:41–44

    Google Scholar 

  • Ellis SB, Brust PF, Kuntz PJ, Waters AF, Harpold MM, Gingeras TR (1985) Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Mol Cell Biol 5:1111–1121

    Google Scholar 

  • Erhart E (1983) Wechselwirkungen zwischen 2 μm DNA und abgeleiteten Plasmiden in der Bäckerhefe Saccharomyces cerevisiae. Thesis, University of Düsseldorf

  • Fukui S, Tanaka A, Kawamoto S, Yasuhara S, Teranishi Y, Osumi M (1975) Ultrastructure of methanol utilizing yeast cells: Appearance of microbodies in relation to high catalase activity. J Bacteriol 123:317–328

    Google Scholar 

  • Fink GR (1970) The biochemical genetics of yeast. Methods Enzymol 17A:59–78

    Google Scholar 

  • Gleeson MA, Waites MJ, Sudbery PE (1984) Development of techniques for genetic analysis in the methylotrophic yeast Hansenula polymorpha. In: Crawford RL, Hanson RS (eds) Microbial growth on C1 compounds. Proceedings of the 4th International Symposiom. American Society for Microbiology Washington DC

    Google Scholar 

  • Goodman JM (1985) Dihydroxyacetone synthase is an abundant constituent of the methanol-induced peroxisome of Candida boidinii. J Biol Chem 260:7108–7113

    Google Scholar 

  • Hollenberg CP (1982) Cloning with 2-μm DNA vectors and the expression of foreign genes in Saccharomyces cerevisiae. Curr Top Microbiol Immunol 96:119–144

    Google Scholar 

  • Holmes DS, Quigley M (1981) A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    Google Scholar 

  • Janowicz ZA, Eckart MR, Drewke C, Roggenkamp R, Hollenberg CP, Maat J, Ledeboer AM, Visser C, Verrips CT (1985) Cloning and characterization of the DAS gene encoding the major methanol assimilatory enzyme from the methylotrophic yeast Hansenula polymorpha. Nucleic Acids Res 13:3043–3062

    Google Scholar 

  • Jones EW, Fink GR (1982) Amino acid and nucleotide biosynthesis. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces cerevisiae. Metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Kearsey S (1984) Structural requirements for the function of a yeast chromosomal replicator. Cell 37:299–307

    Google Scholar 

  • Klebe RJ, Harries JV, Sharp ZD, Douglas MG (1983) A general method for polyethylene glycol-induced genetic transformation of bacteria and yeast. Gene 25:333–341

    Google Scholar 

  • Kunze G, Petzoldt C, Bode R, Samsonova I, Hecker M, Birnbaum D (1985) Transformation of Candida maltosa and Pichia guilliermondii by a plasmid containing Saccharomyces cerevisiae ARG4 DNA. Curr Genet 9:205–209

    Google Scholar 

  • Ledeboer AM, Maat J, Visser C, Bos JW, Verrips CT, Janowicz Z, Eckart M, Roggenkamp R, Hollenberg CP (1985) Molecular cloning and characterization of a gene coding for methanol oxidase in Hansenula polymorpha. Nucleic acids Res 13:3063–3082

    Google Scholar 

  • Liebermann I, Kornberg A, Simms E (1955) Enzymatic synthesis of pyrimidine nucleotides. Orotidine-5′-phosphate and uridine-5′-phosphate. J Biol Chem 215:403–415

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Messing J, Vieira J (1982) A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 19:269–276

    Google Scholar 

  • Miller JH (1977) Experiments in molecular genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Roa M, Blobel G (1983) Biosynthesis of peroxisomal enzymes in the methanotrophic yeast Hansenula polymorpha. Proc Natl Acad Sci USA 80:6872–6876

    Google Scholar 

  • Roggenkamp R, Sahm H, Wagner F (1974) Microbial assimilation of methanol. Induction and function of catalase in Candida boidinii. FEBS Lett 41:283–286

    Google Scholar 

  • Roggenkamp R, Sahm H, Hinkelmann W, Wagner F (1975) Alcohol oxidase and catalase in peroxisomes of methanol-grown Candida boidinii. Eur J Biochem 59:231–236

    Google Scholar 

  • Roggenkamp R, Janowicz Z, Stanikowski B, Hollenberg CP (1984) Biosynthesis and regulation of the peroxisomal methanol oxidase from the methylotrophic yeast Hansenula polymorpha. Mol Gen Genet 194:489–493

    Google Scholar 

  • Sahm H (1977) Metabolism of methanol by yeasts. Adv Biochem Eng 6:77–103

    Google Scholar 

  • Sakaguchi J, Yamamoto M (1982) Cloned ura1 locus of Schizosacharomyces pombe propagates autonomously in this yeast assuming a polymeric form. Proc Natl Acad Sci USA 79:7819–7823

    Google Scholar 

  • Sanchez S, Demain AL (1977) Enrichment of auxotrophic mutants in Hansenula polymorpha. Eur J Appl Microbiol 4:45–49

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sanger F, Coulson AR, Barrell BG, Smith AJH, Roe BA (1980) Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol 143:161–178

    Google Scholar 

  • Sreekrishna K, Webster TD, Dickson RC (1984) Transformation of Kluyveromyces lactis with the kanamycin (G418) resistance gene of Tn903. Gene 28:73–81

    Google Scholar 

  • Stinchcomb DT, Thomas M, Kelly I, Selker E, Davies RW (1980) Eukaryotic DNA segments capable of autonomous replication in yeast. Proc Natl Acad Sci USA 77:4559–4563

    Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, Davies RW (1979) High frequency transformation of yeast: Autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci USA 76:1035–1039

    Google Scholar 

  • Tani Y (1984) Microbiology and biochemistry of methylotrophic yeasts. In: Hou CT (ed) Methylotrophs: Microbiology, biochemistry, and genetics. CRC Press, Boca Raton, p 55

    Google Scholar 

  • Veenhuis M, van Dijken JP, Harder W (1983) The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts. Adv Microb Physiol 24:2–76

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Herrmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roggenkamp, R., Hansen, H., Eckart, M. et al. Transformation of the methylotrophic yeast Hansenula polymorpha by autonomous replication and integration vectors. Mol Gen Genet 202, 302–308 (1986). https://doi.org/10.1007/BF00331655

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00331655

Key words

Navigation