Skip to main content
Log in

Evaluation and model impacts of alternative boundary-layer height formulations

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We study bulk formulations for the boundary-layer height which are currently in use for atmospheric modelling. The formulations are based on various forms of the Richardson number, and these are evaluated with Cabauw field data in stable conditions. Results for both a large-eddy simulation model and anE-ε turbulence closure model for neutral boundary layers are also utilised. An updated formulation is introduced, which combines the effects of shear in the outer region of the boundary layer with surface friction. The updated formulation has a better performance for neutral boundary layers with upper level stratification. The findings are illustrated with a single-column model for a case with relatively high winds over the tropical ocean including shallow cumulus convection, and for a case with fair weather over land. We also show that for stable conditions, the updated formulation performs better than estimates on the basis of surface friction alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André, J. C.: 1983, ‘On the Variability of the Nocturnal Boundary-Layer Depth’,J. Atmos. Sci. 40, 2309–2311.

    Article  Google Scholar 

  • Andrén, A. and Moeng, C.-H.: 1993, ‘Single-Point Closures in a Neutrally Stratified Boundary Layer’,J. Atmos. Sci. 50, 3366–3379.

    Article  Google Scholar 

  • De Baas, A. F. and Driedonks, A. G. M.: 1985, ‘Internal Gravity Waves in a Stably Stratified Boundary Layer’,Boundary-Layer Meteorol. 31, 303–323.

    Article  Google Scholar 

  • Duynkerke, P. G.: 1988, ‘Application of theE-ε Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer’,J. Atmos. Sci. 45, 865–880.

    Article  Google Scholar 

  • Fouquart, Y. and Bonnell, B.: 1980, ‘Computation of Solar Heating of the Earth’s Atmosphere: A New Parameterization’,Beitr. Phys. Atmosph. 53, 35–62.

    Google Scholar 

  • Garratt, J. R.: 1982, ‘Observations in the Nocturnal Boundary Layer’,Boundary-Layer Meteorol. 22, 21–48.

    Article  Google Scholar 

  • Grant, A. L. M.: 1992, ‘The Structure of Turbulence in the Near-Neutral Atmospheric Boundary Layer’,J. Atmos. Sci. 49, 226–239.

    Article  Google Scholar 

  • Hack, J.: 1994, ‘Parameterization of Moist Convection in the NCAR Community Climate Model, CCM2’,J. Geophys. Res. 99, 5551–5568.

    Google Scholar 

  • Hanna, S. R.: 1969, ‘The Thickness of the Planetary Boundary Layer’,Atmos. Environ. 3, 519–536.

    Article  Google Scholar 

  • Holland, J. Z. and Rasmusson, E. M.: 1973, ‘Measurement of Atmospheric Mass, Energy and Momentum Budgets over a 500 km Square of Tropical Ocean’,Mon. Wea. Rev. 101, 44–55.

    Google Scholar 

  • Holtslag, A. A. M. and Boville, B. A.: 1993, ‘Local versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model’,J. Climate 6, 1825–1842.

    Article  Google Scholar 

  • Holtslag, A. A. M., van Meijgaard, E., and de Rooij, W. C.: 1995, ‘A Comparison of Boundary Layer Diffusion Schemes in Unstable Conditions over Land’,Boundary-Layer Meteorol. 76, 69–95.

    Article  Google Scholar 

  • Holtslag, A. A. M. and Nieuwstadt, F. T. M.: 1986, ‘Scaling the Atmospheric Boundary Layer’,Boundary-Layer Meteorol. 36, 201–209.

    Article  Google Scholar 

  • Kim, J. and Mahrt, L.: 1992, ‘Simple Formulation of Turbulent Mixing in the Stable Free Atmosphere and Nocturnal Boundary Layer’,Tellus 44A, 381–394.

    Google Scholar 

  • Kitaigorodskii, S. A. and Joffre, S. M.: 1988, ‘In Search of a Simple Scaling for the Height of the Stratified Atmospheric Boundary Layer’,Tellus 40A, 419–433.

    Article  Google Scholar 

  • Koracin, D. and Berkowicz, R.: 1988, ‘Nocturnal Boundary-Layer Height: Observations by Acoustic Sounders and Predictions in Terms of Surface-Layer Parameters’,Boundary-Layer Meteorol. 43, 65–83.

    Google Scholar 

  • Large, W. G., Mc Williams, J. C., and Doney, S. C.: 1994, ‘Oceanic Vertical Mixing: A Review and a Model with a Nonlocal Boundary-Layer Parameterization’,Rev. Geophys. 32(4), 363–403.

    Article  Google Scholar 

  • Mahrt, L.: 1981, ‘Modelling the Depth of the Stable Boundary Layer’,Boundary-Layer Meteorol. 21, 3–19.

    Article  Google Scholar 

  • Mahrt, L.: 1985, ‘Vertical Structure and Turbulence in the Very Stable Boundary Layer’,J. Atmos. Sci. 42, 2333–2349.

    Article  Google Scholar 

  • Mahrt, L., Heald, R. C., Lenschow, D. H., Stankov, B. B. and Troen, I.: 1979, ‘An Observational Study of the Nocturnal Boundary Layer’,Boundary-Layer Meteorol. 17, 247–264.

    Article  Google Scholar 

  • Moeng, C.-H. and Sullivan, P. P.: 1994, ‘A Comparison of Shear- and Buoyancy-Driven Planetary Boundary-Layer Flows’,J. Atmos. Sci. 51, 999–1022.

    Article  Google Scholar 

  • Morcrette, J.-J.: 1991, ‘Radiation and Cloud Radiative Properties in the European Centre for Medium Range Weather Forecasting System’,J. Geophys. Res. 96, 9121–9132.

    Article  Google Scholar 

  • Nieuwstadt, F. T. M.: 1984, ‘The Turbulent Structure of the Stable, Nocturnal Boundary Layer’,J. Atmos. Sci. 41, 2202–2216.

    Article  Google Scholar 

  • van Pul, W. A. J., Holtslag, A. A. M., and Swart, D. P. J.: 1994, ‘A Comparison of ABL Heights Inferred Routinely from Lidar and Radiosondes at Noontime’,Boundary-Layer Meteorol. 68, 173–191.

    Article  Google Scholar 

  • Siebesma, A. P. and Cuijpers, J. W. M.: 1995, ‘Evaluation of Parametric Assumptions for Shallow Cumulus Convection’,J. Atmos. Sci. 52, 650–666.

    Article  Google Scholar 

  • Siebesma, A. P. and Holtslag, A. A. M.: 1996, ‘Model Impacts of Entrainment and Detrainment Rates in Shallow Cumulus Convection’,J. Atmos. Sci. 53, 2354–2364.

    Article  Google Scholar 

  • Tiedtke, M.: 1989, ‘A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models’,Mon. Wea. Rev. 117, 1779–1800.

    Article  Google Scholar 

  • Troen, I. and Mahrt, L.: 1986, ‘A Simple Model of the Atmospheric Boundary Layer; Sensitivity to Surface Evaporation’,Boundary-Layer Meteorol. 37, 129–148.

    Article  Google Scholar 

  • van Ulden, A. P. and Holtslag, A. A. M.: 1985, ‘Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications’,Boundary-Layer Meteorol. 24, 1196–1207.

    Google Scholar 

  • van Ulden, A. P. and Wieringa, J.: 1996, ‘Atmospheric Boundary Layer Research at Cabauw’,Boundary-Layer Meteorol. 78, 39–69.

    Article  Google Scholar 

  • Wetzel, P. J.: 1982, ‘Toward Parameterization of the Stable Boundary Layer’,J. Appl. Meteorol. 21, 7–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogelezang, D.H.P., Holtslag, A.A.M. Evaluation and model impacts of alternative boundary-layer height formulations. Boundary-Layer Meteorol 81, 245–269 (1996). https://doi.org/10.1007/BF02430331

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02430331

Keywords

Navigation