Annali di Matematica Pura ed Applicata

, Volume 121, Issue 1, pp 217–222 | Cite as

Computation of the homology ofΩ(X∨Y)

  • G. Dula
  • E. Katz


We compute the homology of Ω(X∨Y) (the loop space of the wedge of the spaces X and Y), in terms of the homogies of ΩX and ΩY. To do this we use the fact that our problem is equivalent to the computation of the homology of the free product of two topological groups in terms of the homologies of the topological groups. We establish a multiple Kunneth formula with coefficients over a Dedekind domain, which is used to prove a Kunneth like formula involves homologies over a Dedekind domain and generalizes similar results with integral or field coefficients. Over a principal ideal domain the formula for a free product is made more specific.


Topological Group Free Product Loop Space Ideal Domain Dedekind Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Auslander -D. A. Buchsbaum,Groups rings modules, Harper serie in modern mathematics, Harper and Row, New York (1974).Google Scholar
  2. [2]
    I. Berstein,On co-groups in the category of graded algebras, Trans. Amer. Math. Soc.,115 (1965), pp. 257–269.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    M. Bockstein, A multiple Künneth formula, Izv. Akad. Nauk SSSR Ser. Mat.,27 (1963), pp. 467–483 (Russian).MathSciNetGoogle Scholar
  4. [4]
    A. Clark -L. Smith,The rational homotopy of a wedge, Pacific J. Math.,24 (1968), pp. 241–246.MathSciNetGoogle Scholar
  5. [5]
    T. W. Hungerford, Multiple Künneth formulas for abelian groups, Trans. Amer. Math. Soc.,118 (1965), pp. 257–275.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    T. W. Hungerford,A description of Multi(A 1, …,A n)by generators and realtions, Pacific J. Math.,16 (1966), pp. 61–76.MATHMathSciNetGoogle Scholar
  7. [7]
    D. M. Kan,A combinatorial definition of homotopy groups, Ann. of Math., (2),67 (1958), pp. 282–312.CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    E. Katz, A Künneth formula for coproducts of simplicial groups, Proc. Amer. Math. Soc.,61, no. 1 (1976), pp. 117–121.CrossRefMathSciNetGoogle Scholar
  9. [9]
    S. Mac Lane,Triple torsion products and multiple Künneth formulas, Math. Ann.,140 (1960), pp. 51–64.CrossRefMathSciNetGoogle Scholar
  10. [10]
    J. P. May,Simplicial objects in algebraic topology, Van Nostrand, Princeton, N. J., 1967.Google Scholar
  11. [11]
    C. Miller,The topology of rotation groups, Ann. fo Math., (2),57 (1953), pp. 90–114.CrossRefMATHGoogle Scholar
  12. [12]
    J. W. Milnor,Construction ol universal bundles I, Ann. of Math., (2),63 (1956), pp. 272–284.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    E. Spanier,Algebraic topology, McGraw-Hill series in higher mathematics (1966).Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1979

Authors and Affiliations

  • G. Dula
    • 1
  • E. Katz
    • 1
  1. 1.Israel

Personalised recommendations