Skip to main content
Log in

Algebraic cycles representing cohomology operations

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we will show that certain universal homology classes which are fundamental in topology are algebraic. To be specific, the products of Eilenberg–MacLane spaces \({\mathcal K}_{2q}\equiv K(\mathbf Z,{2}) \times K(\mathbf Z,{4}) \times \cdots \times K(\mathbf Z,{2q}) \) have models which are limits of complex projective varieties. Precisely, we have \({\mathcal K}_{2q}= \varinjlim \nolimits _{d\rightarrow \infty }\mathcal C^{q}_{d}(\mathbf P^{n})\) where \(\mathcal C^{q}_{d}(\mathbf P^{n})\) denotes the Chow variety of effective cycles of codimension q and degree d on \(\mathbf P_{\mathbf C}^{n}\). It is natural to ask which elements in the homology of \({\mathcal K}_{2q}\) are represented by algebraic cycles in these approximations. In this paper we find such representations for the even dimensional classes which are known as Steenrod squares (as well as their Pontrjagin and join products). These classes are dual to the cohomology classes which correspond to the basic cohomology operations also known as the Steenrod squares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyer, C.P., Lawson Jr., H.B., Lima-Filho, P., Mann, B., Michelson, M.-L.: Algebraic cycles and infinite loop spaces. Invent. Math. 113, 373–388 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cartan, H.: Sur les groupes d’Eilenberg–MacLane. II. Proc. Natl. Acad. Sci. 40, 704–707 (1954)

  3. Cartan, H.: Exposé 11. Détermination des algèbres \(H_*(\Pi ,n;{\bf Z})\). Sém. Henri Cartan, Ec. Norm. Sup., (1954–1955) deux. éd. (1956)

  4. Dold, A., Thom, R.: Une géneralisation de la notion d’espaces fibré. Applications aux produits symétriques infinis. C.R. Acad. Sci. Paris 242, 1680–1682 (1956)

  5. Dold, A., Thom, R.: Quasifaserungen und unendliche symmetrische produkte. Ann. Math. (2)67, 230–281 (1956)

  6. Federer, H.: Geometric Measure Theory. Springer, New York (1969)

    MATH  Google Scholar 

  7. Friedlander, E., Lawson Jr., H.B.: A theory of algebraic cocycles. Ann. Math. 136, 361–428 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hardt, R.M., McCrory, C.G.: Steenrod operations in subanalytic homology. Compos. Math. 39, 333–371 (1979)

    MathSciNet  MATH  Google Scholar 

  9. Harris, J.: Algebraic Geometry. A First Course. Springer, New York (1992)

    Book  MATH  Google Scholar 

  10. Lawson Jr., H.B.: The topological structure of the space of algebraic varieties. A.M.S. 17(2), 326–330 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lawson Jr., H.B.: Algebraic cycles and homotopy theory. Ann. Math. 129, 253–291 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lawson Jr., H.B., Lima-Filho, P.C., Michelsohn, M.-L.: Algebraic cycles and equivariant cohomology theories. Proc. Lond. Math. Soc. 73, 679–720 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lawson Jr., H.B., Lima-Filho, P.C., Michelsohn, M.-L.: On equivariant algebraic suspension. J. Algebraic Geom. 7, 627–650 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Lawson Jr., H.B., Lima-Filho, P.C., Michelsohn, M.-L.: Algebraic cycles and the classical groups, I. The real case. Topology 42, 467–506 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lawson Jr., H.B., Lima-Filho, P.C., Michelsohn, M.-L.: Algebraic cycles and the classical groups, II. The quaternionic case. Geom. Topol. 9, 1187–1220 (2005)

  16. Lawson Jr., H.B., Michelsohn, M.-L.: Algebraic cycles, Bott periodicity, and the Chern characteristic map. In: The Mathematical Heritage of Hermann Weyl, A.M.S., Providence, pp. 241–264 (1988)

  17. Lawson Jr., H.B., Michelsohn, M.-L.: Algebraic cycles and group actions. In: Differential Geometry, Longman Press, pp. 261–278 (1991)

  18. Michelsohn, M.-L.: Algebraic representation of Steenrod \(p\text{th}\) powers (in progress)

  19. Schwartz, J.T.: Differential Geometry and Topology. Gordon and Breach, New York (1968)

    MATH  Google Scholar 

  20. Steenrod, N.E.: The Topology of Fibre Bundles. Princeton University Press, Princeton (1951)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-L. Michelsohn.

Additional information

Partially supported by I.H.E.S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michelsohn, ML. Algebraic cycles representing cohomology operations. Math. Z. 285, 593–605 (2017). https://doi.org/10.1007/s00209-016-1722-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1722-x

Keywords

Navigation