
Computation of the Homology of ~2(Xv~¢) (*). 

G. D ~ A  - E. KATz (Israel) 

S u m m a r y .  - We compute the homology of D(XV Y) (the loop space o/ the wedge o/ the spaces 
X and Y), in  terms o/ the homogies o/ Y2X and ~QY. To do this we use the /act that our 
problem, is equivalent to the computation of the homology o] the ]ree product o] two topological 
groups in  terms o/ the  homologies o / the  topological groups. We establish a multiple Kunneth 
]ormula with coe]]icients over a Dedekind domain, which is used to prove a Kunneth like 
]ormula involves homologies over a Dedekind domain and generalizes similar results with 
integral or ]ield coe//icients. Over a principal ideal domain the ]ormula ]or a ]ree product 
is made more specific. 

1.  - I n t r o d u c t i o n .  

The classical K u n n e t h  formula for two complexes was extended by  ~ACLA~E [9] 
for three complexes. BOCKS~EI~ [3] and HU~GE~FO~D [5] proved a multipIe Kun-  
ne th  formula for chain complexes of abelian groups. In  § 2, these results are 
generalized to a multiple Kunne t h  formula for chain complexes of modules over a 
Dedekind domain (D.D.). 

A Kunne th  like formula for the coproduct of two simplicial groups with homology 
taken over a D.D. (theorem 3) is s tated in § 3. Thi s  is a generalization of a similar 
result  with field coefficients [2], [4], as well as for integral coefficients [8]. Up to 
homotopy type,  /2X can be replaced by  a topological group [12], and f2(XV Y) can 
be replaced by  the free product  of topological groups of the homotopy type  of f2(X) 
and ~(Y)  [7]. Thus, by  theorem 3 the homology of Y2(XV Y) is expressed in terms 
of the homologies of ~ X  and ~ Y. In  § 4 we make the formula of theorem 3 appli- 
cable to concrete computat ions when the homologies are given over a principal ideal 
domain (P.I.D.). § 5 is devoted to a demonstrat ion of the use of the formulas. 

All chain complexes are non negative. The ring R is a D.D. throughout  the paper, 
except for § 5 in which i t  is assumed to be a P.I .D.  

2.  - A m u l t i p l e  K m m e t h  f o r m u l a .  

Let  LJ be free resolutions of the modules At, j ___ 1, 2, ..., n [13, p. 219]. Accord- 
ing to the definitions in [6] we have:  

Mult~(A 1, ..., A ~) = H~(L 1 ~)... L ~) 

(*) Entr~ta in Redazione il 31 maggio 1978. 
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( H , ( )  denotes the i dimensional homology functor) .  We also use the  following 

nota t ion :  

A ~ . A s = Torl  (A 1, A s) = H~(I  1 @ A ~) = H~(L ~ @ L s) = mult~ (A ~, A 2) 

[13, p. 219]. The main result  of this section is the following: 

- K ~ be chain complexes of modules over a D.D. such THEOREI~ 1. Le t  K ~, ..., 
t ha t  for each 1 < ~ 4 n -- 1 

Then:  
/b \ ( \ l 

H,. (K')) . 
"~=I " \ J = l  /¢ n 

~ j + i = k , i > O  
i = l  

~ o t e  tha t  the isomorphism conditions in the theorem are just  the requirements  

t ha t  the K u n n e t h  formula  holds for the pairs of chain complexes @ K ~ and K~+~ 

1 <~). < n - - 1 .  These conditions ~re obviously satisfied if each K j is a free complex, 

which will be the s i tuat ion in our applications. 

- A n we have:  P~ooF. F i rs t  we note  tha t  for given moduls A z, ..., 

An-l) ~ - 1  1 A n - l )  $An].  [mult i_ I (A , ..., mult~ (A ~, ..., A ~) [mult~ -~ (A ~, ..., @ A ~] ® 

Immedia t e  consequences of this ure the following: 

mult~ (A 1, ..., A n) = 0 for i > n ,  

mult~ (AI~ ..., A ~) _~ A 1 @.. .  @ A ~ • 

The proof of the theorem now follows b y  induction.  

3. - The homology of  Q ( X V  17). 

Le t  us consider connected simplicial groups G~, Gs [10]. We define the following 

graded module associated with G1 and Gs: 

co n - - 1  

mult  (G1, G2) = ~ ~ ~ mult~ (/~,(G~), . . . , /~ , (Gj . ) ) ,  
n=l i = 0  ( f l , . . . , r n )  

g l  . . . . .  J-) 



G. DVLA - E. KA~z: Computation o] the homology o/ T2(XVY) 219 

where (rl, ..., r~) is a sequence of non-negative integers, (jl, ..., j~) is a sequence 
alternating on the numbers 1, 2, and/~(G¢~) is the augmented r dimensional homo- 
logy of G;,, t =  1, 2, ..., n. The l~-dimensional elements of mult(G~, G~) are: 

oo n - - 1  

(muir(G1, G~))~= ~ ~ ~ mult~(~r~(G~),..., ~,(G¢,)). 

( t l ,  . . . .  i ~ l  

Let R(G) be the associated element of the simplicial group G in the category of 
augmented differential graded Mgebras, and let B~ I.I B~ denote the coproduet in 
this category of the objects B~ and B2 [2]. We thus obtain a generalization of theo- 
rem 2 of [8]. 

T1TE01~]~ 2. - Let R be a D.D. Then we have: H(R((7~)]_IR(Gz))_~t~(~ 
® mult(G~, G2). The proof is by a multiple use of theorem ], and the fact that  
homology commutes with direct sums. 

Combining the latter theorem with theorem 1 of [8] i.e. that  R(G~,G~) and 
l:t(G~) ]__[ R(G2) are chain homotopy equivalent, we immediately obtain the following: 

Tm~o~E~ 3. - Let GI, G2 be two connected simplicial groups. Then over a D.D. R 
we have: 

H(G~, G2) ~ R (~ mult (G~, G~). 

The simplieial group G~, G2 is the coproduct of G1 and G~ in the category of sim- 
plicial groups [8]. We note that  , denotes both the torsion product of two modules 
and the free product of two groups. However, it will always be clear from the 
context which of them we mean. 

lgow let X and ~Y be well pointed spaces such that  ~9X and f)Y are connected. 
Since T2X and f217 are of the homotopy type of topological groups, say G1 and G~ 
respectively, and f2(XV Y) is of the homotopy type of GI*G2 we conclude: 

TtrE0~E~ 3% - Let ~gX and T2Y be connected. Then over a Dedekind domain/~ 
we have: 

H(zg(XV Y)) = R O mult (f2X, f2lz). 

4. - Computations of mult (~X,  D:Y). 

In  this section G1, G2 stand for two groups or for f2X, F2Y respectively and 
GI*G~ stands for the co-product of the groups or for f2(XV17). In  order to apply 
the formulas of theorems 3, 3' to concrete examples we should be able to compute 
malt  (G1, G2). We restrict ourselves to connected spaces whose homology is of fimte 
type, i.e. Hr(G~) is a finitely generated R module for r = 1, 2, ... and i ~ 1, 2. In  
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this case i t  is quite  obvious t ha t  (mult(G~, G~))~ is a direct sum of a finite number  
of te rms of the  form mult~ ( /~(G~),  . . . , /t~(G~,)), and thus the  problem is reduced 
to  compute  those terms.  Fu r the rmore  we require tha t  the ring R is a P . I .D.  This 
last restr ict ion is imposed to assure the following known fact,  which makes fu ture  

computat ions  manageable.  

PI~OPOSITION 1. - R~,(~lCq_~R~*R~= R(~.~), where R~, R~ are the quotients  of R 
by  the  ideals genera ted  by  p, q respectively,  and (p, q) is the  greates t  common diviser 

of p and q. 
We also use the  following fundamentM s t ruc ture  theorem [1, p. 370]: 

PEOP0SlTIOI~ 2. -- Le t  A be a finitely genera ted  module over R. Then  A is a 

finite direct sum of the form:  A ~ R ~  ~, Q ~ R ,  where p~ are primes in R and h~ 
'~=i j = l  

are posit ive integers. This representa t ion is unique up to the order of the summation.  
As a direct  consequence of the  definition of m u l t i ( ) ,  for  finitely genera ted  _~ 

modules A ~, ..., A" we have :  

(i) mult~ (A ~, ..., A ~) is a finite direct  sum of modules of the  form mult~ (Rq~, ..., 
/~,,), where q~. are ei ther  posit ive powers of primes or o (Ro= R). 

" ~(~) A~(~)), where ~ is a pe rmuta t ion  of the (ii) mult~ (A ~, ..., A ~) _~ mult~ (A , ..., 

ordered set (1, ..., n). 

(iii) I f  Rq~, ..., Bq~, are the  torsion modules out  of the modules R~, ..., Rq,, 
then mult~ ( / ~ ,  ..., R~,) ~-- mult~ ( / /~ ,  ..., R ~ ) .  

(iv) Le t  J~q,, ..., Rq. be torsion modules. Then  mult~(Rq., ..., Rq,) --~- (~/~(q ...... ~), 
(n~--l) 

where (q~, ...~ q~,) stands for the greatest  common diviser of q~, ..., q, and (~) is the  

binomial  coefficient. The  proof of (iv) is b y  induction.  
At  this point  we can draw some conclusions. 

mult ,  . . . ,  Co]~oLL~ICY 1. - The module  R~  is a direct  summand of ~ ~ 
only if R ~  is a direct  summand of a t  least one of the modules / t~(G~) ,  . . . , /~(Gj~) .  

COI~OLLAI~Y 2. - -  The  module R~  is a direct  summand o f / ~ ( G 1  * G~) if and only 
if Rr, is a direct  summand of one of the modules l:TI~(G~),~(ff2), 0 < r < k .  

We introduce the following nota t ion  associated with the modules 

{/7,,(G~)), t = 1, 2, ..., n:  

], -~ the number  of R direct  summands in Id~,(Gs,), 

g==--the number  of R~,, h'>~h direct  summands in I~,,(Gj,), 

d~--the number  of R~,, h '>h direct  summands in /~,(ff j ) .  
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CO~OLLAn¥ 3. -- The number of R ~ direct summands in mult~ (H~I(Gj.), ..., Hn(G~.)) 
is given by the expression: 

t ) 
where I is the collection of the functions {0, 1} (~'2 ..... ~'}. 

~Ve are now ready to point out a procedure of computing Hk(G~*G2). This is 
done in several steps. 

I) We find modules Rv~ that  can appear as direct summands in H~(G~. G:) 
(Corollary 2). 

II) We consider all mult~ (H~(G¢~), ..., H~(Gj~)) which appear in (mult (Gx, G~))~, 
that  R~ may be a direct summand of (Corollary 1). 

I II)  We use Corollary 3 to obtain the :number of Rv~ direct summands in 

IV) The number of R direct summands in H~(G~.G~) is obtained by adding 
up the number of /~ direct sums in each of the modules H~(Gjl)(~ . . .  (~H~.(G~.~), 
which make up (mult(G~, G~))~:. The number of the /~ direct summands in such a 
module equals ]~.]~.../,~. 

5. - A n  example.  

%~e demonstrate our method of computation, on the free product of the special 
ortogonal group SO~ with itself. The homology of SOs as computed in [11] is: 

Z j = 0 , 3 ,  

Hj(,~O~)= z~ j =  l , 

o otherwise. 

Let GI=  G~= SO~. To compute H3(GI*G2) we have to consider the number of 
its Z and Z2, direct summands. The number of Z and Z2 direct summands is obtained 
by considering the following terms only: 

mult~o (/Z~(G1)) = z ,  

mult~ (/t3(G2)) ---- Z ,  

mul to  3 (~1((~t) ,  f t l (G2) , / t 1 (G1) )  = Z 2 ,  

mu l to  3 (/~1(e2),  1(el), = 

mult~ (/t~(G~),/t(G~)) = Z2, 

mutt~ (~(G~), I~(a~)) = Z~ . 

15 - A n n a ~  di Matemaf ica  
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W e  conclude t h a t :  

H d S o ~ ,  SoD = ® z ® z~. 
2 4 

The reader  should have  no difficulty in finding t h a t  H~(S03* SO~) has  Z G Z as 
s u m m a n d  only in dimensions which ~re divisible b y  3, und the  n u m b e r  of the  Z2 
summands  in each dimension forms the  following sequence:  

(2~ 2, 4~ 10~ 16~ 30~ 58, 104~ 192~ 356~ 652~ 1200, 2210~ 4062~ ...) . 

We note  t h a t  though the  homology  of SOa is quite s imple the homology  of S0~ ¢ S0~ 

is not .  
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