Skip to main content
Log in

S-related protein can be recombined with self-compatibility in interspecific derivatives ofLycopersicon

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Stylar proteins involved in the self-incompatible (SI) response ofLycopersicon hirsutum have been identified and mapped to the locus that controls SI (S locus).L. esculentum, a self-compatible (SC) species of cultivated tomato, does not display these proteins. Hybrids between SCL. esculentum and SIL. hirsutum are self-sterile despite these individuals bearing pollen containing theS allele ofL. esculentum. In progeny derived from backcrossing the hybrids toL. esculentum, there was a strong correlation between the presence of theS allele fromL. hirsutum and self-infertility. However, this relationship was uncoupled in a number of backcross (BC) progeny. The SI response appeared to be nonexistent in two self-fertile BC individuals that were heterozygous for theS allele ofL. hirsutum, based on Mendelian segregation of a tightly linked DNA marker,CD15, in selfed progeny. Among these progeny self-fertile individuals that were homozygous for theL. hirsutum allele of the linked marker were also determined to be homozygous for anS-related protein ofL. hirsutum through test crosses withL. esculentum. Therefore, plants were produced that were homozygous for a functionalS allele but were self-fertile. This result and other evidence suggest that theS-related proteins are not sufficient to elicit a self-incompatible response inL. esculentum and that there is a mutation(s) inL. esculentum somewhere other than theS locus that leads to self-compatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai, Y., Kron, E., and Kao, T-h. (1991).S-alleles are retained and expressed in a self-compatible cultivar ofPetunia hybrida.Mol. Gen. Genet. 230353.

    Article  CAS  PubMed  Google Scholar 

  • Bernatzky, R. (1993). Genetic mapping and protein product diversity of the self-incompatibility locus in wild tomato (Lycopersicon peruvianum).Biochem. Genet. 31173.

    CAS  PubMed  Google Scholar 

  • Bernatzky, R., and Miller, D. D. (1994). Self incompatibility is codominant in intraspecific hybrids of self-compatible and self-incompatibleLycopersicon peruvianum andL. hirsutum based on protein and DNA marker analysis.Sex. Plant Reprod. 7297.

    Article  Google Scholar 

  • Bernatzky, R., and Schilling, A. (1992). Methods for Southern blotting and hybridization. In Osborn, T. C., and Beckmann, J. S. (eds.),Plant Genomes: Methods for Genetic and Physical Mapping Kluwer Academic, Dordrecht, The Netherlands.

    Google Scholar 

  • Bernatzky, R., and Tanksley, S. D. (1986). Genetics of actin-related sequences in tomato.Theor. Appl. Genet. 72314.

    Article  CAS  Google Scholar 

  • Chetelat, R. T., and DeVerna, J. W. (1991). Expression of unilateral incompatibility in pollen ofLycopersicon pennellii is determined by major loci on chromosomes 1, 6 and 10.Theor. Appl. Genet. 82704.

    Article  Google Scholar 

  • Dana, M. N., and Ascher, P. D. (1986a). Sexually localized expression of pseudo-self compatibility (PSC) inPetunia × hybrida hort. 1. Pollen inactivation.Theor. Appl. Genet. 71573.

    Google Scholar 

  • Dana, M. N., and Ascher, P. D. (1986b). Sexually localized expression of pseudo-self compatibility (PSC) inPetunia × hybrida hort. 2. Stylar inactivation.Theor. Appl. Genet. 71578.

    Google Scholar 

  • de Nettancourt, D. (1977).Incompatibility in Angiosperms Springer-Verlag, New York.

    Google Scholar 

  • Flaschenriem, D. R., and Ascher, P. D. (1979).S-allele discrimination in styles ofPetunia hybrida bearing stylar conditioned pseudo-selfcompatibility.Theor. Appl. Genet. 5523.

    Article  Google Scholar 

  • Jahnen, W., Lush, W. M., and Clarke, A. E. (1989a). Inhibition of pollen tube growth by isolated S-glycoproteins ofNicotiana alata.Plant Cell 1501.

    Article  CAS  PubMed  Google Scholar 

  • Jahnen, W., Batterham, M. P., Clarke, A. E., Moritz, R. L., and Simpson, R. J. (1989b). Identification, isolation, and N-terminal sequencing of style glycoproteins associated with self-incompatibility inNicotiana alata.Plant Cell 1493.

    Article  CAS  PubMed  Google Scholar 

  • Kao, T-h., and Huang, H. (1994). Gametophytic self-incompatibility: A mechanism for self/nonself discrimination during sexual reproduction.Plant Physiol. 105461.

    CAS  PubMed  Google Scholar 

  • Lee, H.-S., Huang, S., and Kao, T-h. (1994).S-proteins control rejection of incompatible pollen inPetunia inflata.Nature 367560.

    Article  CAS  PubMed  Google Scholar 

  • Liedl, B. E., Liu, S.-C., Esposito, D., and Mutschler, M. A. (1993). Identification and mapping of S in a self-compatible F2 population ofL. esculentum × L. pennellii.Rep. Tomato Genet. Coop. 4333.

    Google Scholar 

  • Martin, F. W. (1961). The inheritance of self-incompatibility in hybrids ofLycopersicon esculentum Mill. ×L. chilense Dun.Genetics 461443.

    Google Scholar 

  • Martin, F. W. (1968). The behavior ofLycopersicon incompatibility alleles in an alien genetic millieu.Genetics 60101.

    Google Scholar 

  • Martin, G. B., Brommonschenkel, S. H., Chungwongse, J., Frary, A., Ganal, M. W., Spivey, R., Wu, T., Earle, E. D., and Tanksley, S. D. (1993). Map-based cloning of a protein kinase gene conferring disease resistance in tomato.Science 2621432.

    CAS  PubMed  Google Scholar 

  • Matton, D. P., Nass, N., Clarke, A. E., and Newbigin, E. (1994). Self-incompatibility: How plants avoid illegitimate offspring.Proc. Natl. Acad. Sci. USA 911992.

    CAS  PubMed  Google Scholar 

  • McClure, B. A., Haring, V., Ebert, P. R., Anderson, M. A., Simpson, R. J., Sakiyama, F., and Clarke, A. E. (1989). Style self-incompatibility gene products ofNicotiana alata are ribonucleases.Nature 342955.

    Article  CAS  PubMed  Google Scholar 

  • McClure, B. A., Gray, J. E., Anderson, M. A., and Clarke, A. E. (1990). Self-incompatibility inNicotiana alata involves degredation of pollen rRNA.Nature 347757.

    Article  CAS  Google Scholar 

  • Murfett, J., Atherton, T. L., Mou, B., Gasser, C. S., and McClure, B. A. (1994). S-RNase expression in transgenicNicotiana causes S-allele-specific pollen rejection.Nature 367563.

    Article  CAS  PubMed  Google Scholar 

  • Rick, C. M. (1988). Molecular markers as aids for germplasm management and use inLycopersicon.HortSci. 2355.

    Google Scholar 

  • Rick, C. M., and Chetelat, R. T. (1991). The breakdown of self-incompatibility inLycopersicon hirsutum. In Hawkes, Lester, Nee, and Estrada (eds.),Solanaceae III: Taxonomy, Chemistry, Evolution, Royal Botanic Gardens Kew and Linnean Society of London, pp. 253–256.

  • Rivers, B. A., and Bernatzky, R. (1994). Protein expression of a self-incompatible allele fromLycopersicon peruvianum: Introgression and behavior in a self-incompatible background.Sex. Plant Reprod. 7357.

    Article  Google Scholar 

  • Rivers, B. A., Bernatzky, R., Robinson, S. J., and Jahnen-Dechent, W. (1993). Molecular diversity at the self-incompatibility locus is a salient feature in natural populations of wild tomato (Lycopersicon peruvianum).Mol. Gen. Genet. 238419.

    Article  CAS  PubMed  Google Scholar 

  • Royo, J., Kunz, C., Kowyama, Y., Anderson, M. A., Clarke, A. E., and Newbigin, E. (1994). Loss of a histidine residue at the active site of S-ribonuclease leads to self compatibility inLycopersicon peruvianum.Proc. Natl. Acad. Sci. USA 916511.

    CAS  PubMed  Google Scholar 

  • Sims, T. L. (1993). Genetic regulation of self-incompatibility.Crit. Rev. Plant Sci. 12129.

    Google Scholar 

  • Tanksley, S. D., and Loaiza-Figueroa, F. (1985). Gametophytic self-incompatibility is controlled by a single major locus on chromosome 1 inLycopersicon peruvianum.Proc. Natl. Acad. Sci. USA 825093.

    CAS  PubMed  Google Scholar 

  • Thompson, R. D., and Kirsch, H.-H. (1992). TheS-locus of flowering plants: When self-rejection is self interest.Trends Genet. 8383.

    Google Scholar 

  • Thompson, R. D., Uhrig, H., Hermsen, J. G. T., Salamini, F., and Kaufmann, H. (1991). Investigation of a self-compatible mutation inSolanum tuberosum clones inhibiting S-allele activity in pollen differentially.Mol. Gen. Genet. 226283.

    Article  CAS  PubMed  Google Scholar 

  • Woodward, J. R., Bacic, A., Jahnen, W., and Clarke, A. E. (1989). N-linked glycan chains onS-allele-associated glycoproteins fromNicotian alata Plant Cell 1511.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernatzky, R., Glaven, R.H. & Rivers, B.A. S-related protein can be recombined with self-compatibility in interspecific derivatives ofLycopersicon . Biochem Genet 33, 215–225 (1995). https://doi.org/10.1007/BF02401852

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02401852

Key words

Navigation