Skip to main content

Molecular and Developmental Biology: Self-incompatibility

  • Chapter
  • First Online:
The Prunus mume Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 442 Accesses

Abstract

Although both self-compatible and self-incompatible cultivars exist in Japanese apricot (Prunus mume Sieb. et Zucc.), self-compatible ones have a horticultural advantage over self-incompatible ones in terms of fruit production. Therefore, self-compatibility is one of the important breeding objectives in Japan. Japanese apricot exhibits a homomorphic gametophytic self-incompatibility system in which self/nonself-recognition is controlled by a single multiallelic locus, the so-called S locus. During the last two decades, the ribonuclease gene, S-RNase, and the F-box gene, SFB, were identified as the pistil S and pollen S determinant genes, respectively, located within the S locus. Mutated versions of SFB, S3′ and Sf, both of which contain a non-autonomous transposable element with the sequence resembling LTR of retrotransposons within the coding sequence, were reported to confer self-compatibility. Sequence similarity in the inserted sequence could be used to develop a universal PCR marker to detect S3′ and Sf. Since S3′ and Sf are the only self-compatible S haplotypes that have been found in Japanese apricot, the PCR marker would serve as a universal self-compatible marker for MAS in this species. Although the existence of a Prunus-specific gametophytic self-incompatibility recognition mechanism was supported by many reports, it has yet to be fully clarified. Recent genomic, molecular and evolutionary studies using whole-genome sequences, including P. mume, have provided new insights into the molecular network involved in the self-incompatibility recognition system in Prunus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar B, Vieira J, Cunha AE, Fonseca NA, Iezzoni A, van Nocker S, Vieira CP (2015) Convergent evolution at the gametophytic self-incompatibility system in Malus and Prunus. PLoS ONE 10(5):e0126138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akagi T, Henry IM, Morimoto T, Tao R (2016) Insights into the Prunus-specific S-RNase-based self-incompatibility system from a genome-wide analysis of the evolutionary radiation of S locus-related F-box genes. Plant Cell Physiol 57(6):1281–1294

    Article  CAS  PubMed  Google Scholar 

  • Anderson MA, Cornish E, Mau S-L, Williams E, Hoggart R, Atkinson A, Bonig I, Grego B, Simpson R, Roche P (1986) Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature 321(6065):38

    Article  CAS  Google Scholar 

  • Anderson MA, McFadden GI, Bernatzky R, Atkinson A, Orpin T, Dedman H, Tregear G, Fernley R, Clarke AE (1989) Sequence variability of three alleles of the self-incompatibility gene of Nicotiana alata. Plant Cell 1(5):483–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broothaerts W, Janssens GA, Proost P, Broekaert WF (1995) cDNA cloning and molecular analysis of two self-incompatibility alleles from apple. Plant Mol Biol 27(3):499–511

    Article  CAS  PubMed  Google Scholar 

  • Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann MO Botl Gard 80(3):528–580

    Article  Google Scholar 

  • De Franceschi P, Dondini L, Sanzol J (2012) Molecular bases and evolutionary dynamics of self-incompatibility in the Pyrinae (Rosaceae). J Exp Bot 63(11):4015–4032

    Article  PubMed  CAS  Google Scholar 

  • De Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants, vol 3. Springer Science & Business Media

    Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci. USA 101:9891–9896

    Article  CAS  Google Scholar 

  • Entani T, Iwano M, Shiba H, Che FS, Isogai A, Takayama S (2003) Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume: identification of a pollen-expressed F-box gene with allelic diversity. Genes Cells 8(3):203–213

    Article  CAS  PubMed  Google Scholar 

  • Golz J, Su V, Clarke A, Newbigin E (1999) A molecular description of mutations affecting the pollen component of the Nicotiana alata S locus. Genetics 152(3):1123–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golz JF, Oh H-Y, Su V, Kusaba M, Newbigin E (2001) Genetic analysis of Nicotiana pollen-part mutants is consistent with the presence of an S-ribonuclease inhibitor at the S locus. Proc Natl Acad Sci USA 98(26):15372–15376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habu T, Tao R (2014) Transcriptome analysis of self- and cross-pollinated pistils of Japanese apricot (Prunus mume Sieb. et Zucc.). J. Japan. Soc. Hort. Sci 83:95–107

    Article  CAS  Google Scholar 

  • Habu T, Kishida F, Morikita M, Kitajima A, Yamada T, Tao R (2006) A simple and rapid procedure for the detection of self-compatible individuals in Japanese apricot (Prunus mume Sieb. et Zucc.) using the loop-mediated isothermal amplification (LAMP) method. Hort Sci 41(5):1156–1158

    Article  CAS  Google Scholar 

  • Habu T, Matsumoto D, Fukuta K, Esumi T, Tao R, Yaegaki H, Yamaguchi M, Matsuda M, Konishi T, Kitajima A (2008) Cloning and characterization of twelve S-RNase alleles in Japanese apricot (Prunus mume Sieb. et Zucc.). J Jpn Soc Hort Sci 77(4):374–381

    Article  CAS  Google Scholar 

  • Horiuchi H, Yanai K, Takagi M, Yano K, Wakabayashi E, Sanda A, Mine S, Ohgi K, Irie M (1988) Primary structure of a base non-specific ribonuclease from Rhizopus niveus. J Biochem 103(3):408–418

    Article  PubMed  Google Scholar 

  • Igic B, Kohn JR (2001) Evolutionary relationships among self-incompatibility RNases. Proc Natl Acad Sci USA 98(23):13167–13171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda K, Igic B, Ushijima K, Yamane H, Hauck NR, Nakano R, Sassa H, Iezzoni AF, Kohn JR, Tao R (2004) Primary structural features of the S haplotype-specific F-box protein, SFB, in Prunus. Sexual Plant Reprod 16(5):235–243

    Article  CAS  Google Scholar 

  • Ioerger T, Gohlke J, Xu B, T-h Kao (1991) Primary structural features of the self-incompatibility protein in Solanaceae. Sexual Plant Reprod 4(2):81–87

    Article  Google Scholar 

  • Janick J, Moore JN (1975) Advances in fruit breeding. Purdue University Press, West Lafayette

    Google Scholar 

  • Kao T, Tsukamoto T (2004) The molecular and genetic bases of S-RNase-based self-incompatibility. Plant Cell 16(suppl. 1):S72–S83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawata Y, Sakiyama F, Tamaoki H (1988) Amino-acid sequence of ribonuclease T2 from Aspergillus oryzae. Eur J Biochem 176(3):683–697

    Article  CAS  PubMed  Google Scholar 

  • Kubo K, Entani T, Takara A, Wang N, Fields AM, Hua Z, Toyoda M, S-i Kawashima, Ando T, Isogai A (2010) Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science 330(6005):796–799

    Article  CAS  PubMed  Google Scholar 

  • Kubo K, Paape T, Hatakeyama M, Entani T, Takara A, Kajihara K, Tsukahara M, Shimizu-Inatsugi R, Shimizu KK, Takayama S (2015) Gene duplication and genetic exchange drive the evolution of S-RNase-based self-incompatibility in Petunia. Nat Plants 1(1):14005

    Article  CAS  PubMed  Google Scholar 

  • Lai Z, Ma W, Han B, Liang L, Zhang Y, Hong G, Xue Y (2002) An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol Biol 50(1):29–41

    Article  CAS  PubMed  Google Scholar 

  • Luu D-T, Qin X, Laublin G, Yang Q, Morse D, Cappadocia M (2001) Rejection of S-heteroallelic pollen by a dual-specific S-RNase in Solanum chacoense predicts a multimeric SI pollen component. Genetics 159(1):329–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto D, Tao R (2016) Distinct self-recognition in the Prunus S-RNase-based gametophytic self-incompatibility system. Hort J 85(4):289–305

    Article  CAS  Google Scholar 

  • Matsumoto D, Yamane H, Tao R (2008) Characterization of SLFL1, a pollen-expressed F-box gene located in the Prunus S locus. Sexual Plant Reprod 21(2):112–121

    Article  CAS  Google Scholar 

  • Matsumoto D, Yamane H, Abe K, Tao R (2012) Identification of a Skp1-like protein interacting with SFB, the pollen S determinant of the gametophytic self-incompatibility in Prunus. Plant Physiol 159(3):1252–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, Clarke AE (1989) Style self-incompatibility gene products of Nicotlana alata are ribonucleases. Nature 342(6252):955

    Article  CAS  PubMed  Google Scholar 

  • McCubbin AG, T-h Kao (2000) Molecular recognition and response in pollen and pistil interactions. Annu Rev Cell Dev Biol 16(1):333–364

    Article  CAS  PubMed  Google Scholar 

  • Morimoto T, Akagi T, Tao R (2015) Evolutionary analysis of genes for S-RNase-based self-incompatibility reveals S locus duplications in the ancestral Rosaceae. Hort J 84(3):233–242

    Article  CAS  Google Scholar 

  • Ono K, Akagi T, Morimoto T, Wünsch A, Tao R (2018) Genome re-sequencing of diverse sweet cherry (Prunus avium) individuals reveals a modifier gene mutation conferring pollen-part self-compatibility. Plant Cell Physiol 59(6):1265–1275

    Article  CAS  PubMed  Google Scholar 

  • Sassa H, Hirano H, Ikehashi H (1992) Self-incompatibility-related RNases in styles of Japanese pear (Pyrus serotina Rehd.). Plant Cell Physiol 33(6):811–814

    Google Scholar 

  • Sassa H, Hirano H, Ikehashi H (1993) Identification and characterization of stylar glycoproteins associated with self-incompatibility genes of Japanese pear, Pyrus serotina Rehd. Mol Gen Genet 241(1–2):17–25

    Article  CAS  PubMed  Google Scholar 

  • Sassa H, Nishio T, Kowyama Y, Hirano H, Koba T, Ikehashi H (1996) Self-incompatibility (S) alleles of the Rosaceae encode members of a distinct class of the T 2/S ribonuclease superfamily. Mol Gen Genet MGG 250(5):547–557

    CAS  PubMed  Google Scholar 

  • Sassa H, Kakui H, Miyamoto M, Suzuki Y, Hanada T, Ushijima K, Kusaba M, Hirano H, Koba T (2007) S locus F-box brothers: multiple and pollen-specific F-box genes with S haplotype-specific polymorphisms in apple and Japanese pear. Genetics 175(4):1869–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sassa H, Kakui H, Minamikawa M (2010) Pollen-expressed F-box gene family and mechanism of S-RNase-based gametophytic self-incompatibility (GSI) in Rosaceae. Sexual Plant Reprod 23(1):39–43

    Article  CAS  Google Scholar 

  • Takayama S, Isogai A (2005) Self-incompatibility in plants. Annu Rev Plant Biol 56:467–489

    Article  CAS  PubMed  Google Scholar 

  • Tao R, Iezzoni AF (2010) The S-RNase-based gametophytic self-incompatibility system in Prunus exhibits distinct genetic and molecular features. Sci Hort 124(4):423–433

    Article  CAS  Google Scholar 

  • Tao R, Yamane H, Sassa H, Mori H, Gradziel TM, Dandekar AM, Sugiura A (1997) Identification of stylar RNases associated with gametophytic self-incompatibility in almond (Prunus dulcis). Plant Cell Physiol 38(3):304–311

    Article  CAS  PubMed  Google Scholar 

  • Tao R, Yamane H, Sugiura A, Murayama H, Sassa H, Mori H (1999) Molecular typing of S-alleles through identification, characterization and cDNA cloning for S-RNases in sweet cherry. J Amer Soc Hort Sci 124(3):224–233

    Article  CAS  Google Scholar 

  • Tao R, Habu T, Yamane H, Sugiura A, Iwamoto K (2000) Molecular markers for self-compatibility in Japanese apricot (Prunus mume). Hort Sci 35(6):1121–1123

    Article  CAS  Google Scholar 

  • Tao R, Habu T, Namba A, Yamane H, Fuyuhiro F, Iwamoto K, Sugiura A (2002a) Inheritance of S f-RNase in Japanese apricot (Prunus mume) and its relation to self-compatibility. Theor Appl Genet 105(2–3):222–228

    Article  CAS  PubMed  Google Scholar 

  • Tao R, Habu T, Yamane H, Sugiura A (2002b) Characterization and cDNA cloning for Sf-RNase, a molecular marker for self-compatibility, in Japanese apricot (Prunus mume). J Jpn Soc Hort Sci 71(5):595–600

    Article  CAS  Google Scholar 

  • Tao R, Namba A, Yamane H, Fuyuhiro Y, Watanabe T, Habu T, Sugiura A (2003) Development of the Sf-RNase gene-specific PCR primer set for Japanese apricot (Prunus mume Sieb. et Zucc.). Hortic Res (Japan)

    Google Scholar 

  • Tsukamoto T, Hauck NR, Tao R, Jiang N, Iezzoni AF (2006) Molecular characterization of three non-functional S-haplotypes in sour cherry (Prunus cerasus). Plant Mol Biol 62(3):371

    Article  CAS  PubMed  Google Scholar 

  • Ushijima K, Sassa H, Tao R, Yamane H, Dandekar A, Gradziel T, Hirano H (1998) Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Mol Gen Genet 260(2–3):261–268

    Article  CAS  PubMed  Google Scholar 

  • Ushijima K, Sassa H, Tamura M, Kusaba M, Tao R, Gradziel TM, Dandekar AM, Hirano H (2001) Characterization of the S-locus region of almond (Prunus dulcis): analysis of a somaclonal mutant and a cosmid contig for an S haplotype. Genetics 158(1):379–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, Hirano H (2003) Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15(3):771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck NR, Iezzoni AF, Tao R (2004) The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume. Plant J 39(4):573–586

    Google Scholar 

  • Wang Y, Wang X, Skirpan AL, Kao Th (2003) S-RNase-mediated self-incompatibility. J Exp Bot 54(380):115–122

    Article  CAS  PubMed  Google Scholar 

  • Westwood M (1993) Temperate-zone pomology physiology and culture. Timber Press, Portland, Oregon, p 523

    Google Scholar 

  • Xue Y, Carpenter R, Dickinson HG, Coen ES (1996) Origin of allelic diversity in Antirrhinum S locus RNases. Plant Cell 8(5):805–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yaegaki H, Shimada T, Moriguchi T, Haji T, Yamaguchi M, Hayama H (2001) Molecular characterization of S-RNase genes and S-genotypes in the Japanese apricot Prunus mume Sieb. et Zucc.). Sexual Plant Reprod 13(5):251–257

    Article  CAS  Google Scholar 

  • Yaegaki H, Miyake M, Haji T, Yamaguchi M (2002a) Determination of self-fruitfulness in Japanese apricot (Prunus mume Sieb. et Zucc.) cultivars. Bull Natl Inst Fruit Tree Sci 1:55–60 (In Japanese with English summary)

    Google Scholar 

  • Yaegaki H, Miyake M, Haji T, Yamaguchi M (2002b) Determination of self-fruitfulness in Japanese apricot Prunus mume Sieb. et Zucc.) cultivars. Bull. Natl. Inst. Fruit Tree Sci 1: 55–60 (In Japanese with English summary)

    Google Scholar 

  • Yaegaki H, Miyake M, Haji T, Yamaguchi M (2003) Inheritance of male sterility in Japanese apricot (Prunus mume). HortScience 38:1422–1423

    Article  Google Scholar 

  • Yamane H, Tao R (2009) Molecular basis of self-(in) compatibility and current status of S-genotyping in Rosaceous fruit trees. J Jpn Soc Hort Sci 78(2):137–157

    Article  CAS  Google Scholar 

  • Yamane H, Tao R, Mori H, Sugiura A (2003a) Identification of a non-S RNase, a possible ancestral form of S-RNases, in Prunus. Mol Genet Genom 269(1):90–100

    CAS  Google Scholar 

  • Yamane H, Ushijima K, Sassa H, Tao R (2003b) The use of the S haplotype-specific F-box protein gene, SFB, as a molecular marker for S-haplotypes and self-compatibility in Japanese apricot (Prunus mume). Theor Appl Genet 107(8):1357–1361

    Article  CAS  PubMed  Google Scholar 

  • Yamane H, Fukuta K, Matsumoto D, Hanada T, Mei G, Habu T, Fuyuhiro Y, Ogawa S, Yaegaki H, Yamaguchi M, Tao R (2009) Characterization of a novel selfcompatible S3′ haplotype leads to the development of a universal PCR marker for two distinctly originated self-compatible S haplotypes in Japanese apricot (Prunus mume Sieb. et Zucc.). J. Japan. Soc. Hort. Sci 78:40–48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryutaro Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamane, H., Tao, R. (2019). Molecular and Developmental Biology: Self-incompatibility. In: Gao, Z. (eds) The Prunus mume Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-10797-0_12

Download citation

Publish with us

Policies and ethics