, Volume 80, Issue 6, pp 603–608 | Cite as

A coat of glycoconjugates on the inner surface of the lysosomal membrane in the rat kidney

  • W. F. Neiss


After perfusion fixation of the rat kidney with glutaraldehyde, and postfixation of the renal cortex with osmium-low ferrocyanide (40 mM OsO4+6 mM K4Fe(CN)6 in 0.135 M phosphate buffer, pH 8.0), secondary lysosomes of proximal tubule cells carry acoat of electron dense material on the inner surface of the lysosomal membrane. This coat separates matrix and membrane of lysosomes, and corresponds in location and width to the electron translucent halo of conventionally processed lysosomes in TEM. The material which forms the coat, is stained by phosphotungstic acid at pH 0.3, and by periodic acid — thiocarbohydrazide — silver proteinate more intensively than the cell surface coat of the same cell; it contains a high concentration of hydroxyl,vicinal-glycol and α-aminoalcohol groups.


Glutaraldehyde Dense Material Renal Cortex OsO4 Ferrocyanide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babaï F, Bernhard W (1971) Détection cytochimique par l'acide phosphotungstique de certains polysaccharides sur coupes à congélation ultrafines. J Ultrastruct Res 37:601–617CrossRefPubMedGoogle Scholar
  2. Bahr GF, Zeitler E (1965) The determination of magnification in the electron microscope. II. Means for the determination of magnification. Lab Invest 14:880–891PubMedGoogle Scholar
  3. Bertolini B (1965) The structure of the liver cells during the life cycle of a brook-lamprey (Lampetra Zanandreai). Z Zellforsch 67:297–318CrossRefPubMedGoogle Scholar
  4. Burnside J, Schneider DL (1982) Characterization of the membrane proteins of rat liver lysosomes. Biochem J 204:525–534PubMedGoogle Scholar
  5. Daems WTh, Persijn J-P (1964) Histochemical studies on lysosomes of mouse spleen macrophages. Proc 3rd Europ Reg Conf Electron Micros vol B. Publish House Czechoslovak Acad Sci, Prague, pp 217–218Google Scholar
  6. Daems WTh, van Rijssel ThG (1961) The fine structure of the peribiliary dense bodies in mouse liver tissue. J Ultrastruct Res 5:263–290CrossRefPubMedGoogle Scholar
  7. Daems WTh, Wisse E, Brederoo P (1969) Electron microscopy of the vacuolar apparatus. In: Dingle JT, Fell HB (eds) Lysosomes in biology and pathology, vol 1. North Holland, Amsterdam London, pp 64–112Google Scholar
  8. Daems WTh, Wisse E, Brederoo P (1972) Electron microscopy of the vacuolar apparatus. In: Dingle JT (ed) Lysosomes, a laboratory handbook. North Holland, Amsterdam London, pp 150–199Google Scholar
  9. Davidoff MS (1981). Structure and functions of lysosomes. Medicina i Fizkultura, Sofia, p 257Google Scholar
  10. de Bruijn WC, den Breejen P (1976) Glycogen, its chemistry and morphological appearance in the electron microscope. III. Identification of the tissue ligands involved in the glycogen contrast staining reaction with the osmium(VI)-iron(II) complex. Histochem J 8:121–142CrossRefPubMedGoogle Scholar
  11. Fittschen C, Parmley RT, Austin RL, Crist WM (1983) Vicinal glycol-staining identifies secondary granules in human normal and Chédiak-Higashi neutrophils. Anat Rec 205:301–311CrossRefPubMedGoogle Scholar
  12. Gersten DM, Kimmerer ThW, Bosmann HB (1974) The lysosome periphery: Biochemical and electrokinetic properties of the tritosome surface. J Cell Biol 60:764–773CrossRefPubMedGoogle Scholar
  13. Geyer G (1977) Elektronenmikroskopische Histochemie. Teil 1: Nachweis-und Kontrastierungsmethoden für Kohlenhydrate, Proteine und Aminosäuren, Nucleinsäuren, Lipide und Mineralstoffe. In: Graumann W, Neumann K (eds) Handbuch der Histochemie, vol I part 3. Gustav Fischer, Stuttgart New York, p 464Google Scholar
  14. Glaumann H, Ericsson JLE, Marzella L (1981) Mechanisms of intralysosomal degradation with special reference to autophagocytosis and heterophagocytosis of cell organelles. Int Rev Cytol 73:149–182PubMedGoogle Scholar
  15. Glick MC, Comstock CA, Cohen MA, Warren L (1971) Membranes of animal cells. VIII. Distribution of sialic acid, hexosamines and sialidase in the L cell. Biochim Biophys Acta 233:247–257PubMedGoogle Scholar
  16. Gros D, Challice CE (1975) The coating of mouse myocardial cells. A cytochemical electron microscopical study. J Histochem Cytochem 23:727–744PubMedGoogle Scholar
  17. Hayat MA (1975) Positive staining for electron microscopy. van Nostrand Reinhold, New York London, p 361Google Scholar
  18. Henning R (1977) Possible functions of carbohydrates in lysosomal membranes. Biochem Soc Trans 5:62Google Scholar
  19. Henning R, Stoffel W (1973) Glycosphingolipids in lysosomal membranes. Hoppe-Seyler's Z Physiol Chem 354:760–770PubMedGoogle Scholar
  20. Henning R, Kaulen HD, Stoffel W (1970) Biochemical analysis of the pinocytotic process, I. Isolation and chemical composition of the lysosomal and the plasma membrane of the rat liver cell. Hoppe-Seyler's Z Physiol Chem 351:1191–1199PubMedGoogle Scholar
  21. Henning R, Plattner H, Stoffel W (1973) Nature and localization of acidic groups on lysosomal membranes. Biochim Biophys Acta 330:61–75PubMedGoogle Scholar
  22. Holtzman E (1976) Lysosomes. A survey. Cell biology monographs, vol 3. Springer, Wien New York, p 298Google Scholar
  23. Knecht E, Hernández J (1978) Ultrastructural localization of polysaccharides in the vacuolar system of an established cell line. Cell Tissue Res 193:473–489CrossRefPubMedGoogle Scholar
  24. Larsson L (1975) Effects of different fixatives on the ultrastructure of the developing proximal tubule in the rat kidney. J Ultrastruct Res 51:140–151CrossRefPubMedGoogle Scholar
  25. Leduc EH, Bernhard W (1967) Recent modifications of the glycol methacrylate embedding procedure. J Ultrastruct Res 19:196–199CrossRefPubMedGoogle Scholar
  26. Lewis PR, Knight DP (1977) Staining methods for sectioned material. North Holland, Amsterdam New York Oxford, p 311Google Scholar
  27. Luft JH (1976) The structure and properties of the cell surface coat. Int Rev Cytol 45:291–382PubMedCrossRefGoogle Scholar
  28. Marinozzi V (1968) Phosphotungstic acid (PTA) as a stain for polysaccharides and glycoproteins in electron microscopy. In: Bocciarelli DS (ed) Proc 4th Europ Reg Conf Electron Micros, vol 2. Tipografia Poliglotta Vaticana, Rome, pp 55–56Google Scholar
  29. Maunsbach AB (1966) Observations on the ultrastructure acid phosphatase activity of the cytoplasmic bodies in rat kidney proximal tubules cells. With a comment on their classification. J Ultrastruct Res 16:197–238CrossRefPubMedGoogle Scholar
  30. Maunsbach AB (1969) Functions of lysosomes in kidney cells. In: Dingle IT, Fell HB (eds) Lysosomes in biology and pathology, vol 1. North Holland, Amsterdam London, pp 115–154Google Scholar
  31. Milsom DW, Wynn CH (1973) Protein and carbohydrate composition of lysosomal membranes. Biochem Soc Trans 1:426–428Google Scholar
  32. Neiss WF (1982) Histogenesis of the loop of Henle in the rat kidney. Anat Embryol 164:315–330CrossRefPubMedGoogle Scholar
  33. Neiss WF (1983a) The electron density of light and dark lysosomes in the proximal convoluted tubule of the rat kidney. Histochemistry 77:63–77CrossRefPubMedGoogle Scholar
  34. Neiss WF (1983b) Extraction of osmium-containing lipids by section staining for TEM. Histochemistry 79:245–250CrossRefPubMedGoogle Scholar
  35. Neiss WF (1984) Electron staining of the cell surface coat by osmium-low ferrocyanide. Histochemistry 80:231–242CrossRefPubMedGoogle Scholar
  36. Parmley RT, Eguchi M, Spicer SS (1979) Ultrastructural cytochemistry of complex carbohydrates in leukocyte granules. J Histochem Cytochem 27:1167–1170PubMedGoogle Scholar
  37. Parmley RT, Eguchi M, Spicer SS, Alvarez CJ, Austin RL (1980) Ultrastructural cytochemistry and radioautography of complex carbohydrates in heterophil granulocytes from rabbit bone marrow. J Histochen Cytochem 28:1067–1080Google Scholar
  38. Pearse AGE (1968) Histochemistry, theoretical and applied. 3rd edn. Churchill, London, p 759Google Scholar
  39. Perrin-Waldemer C (1977) Détection de glycoprotéines et de protéines par l'acide phosphotungstique au niveau des glandes accessoires mâles deDrosophila melanogaster incluses au G.M.A. Biol Cell 30:171–176Google Scholar
  40. Rambourg A (1967) Detection des glycoprotéines en microscopie électronique: coloration de la surface cellulaire et de l'appareil de Golgi par un mélange acide chromique-phosphotungstique. CR Acad Sci Paris D 265:1426–1428Google Scholar
  41. Rambourg A, Racadot J (1968) Identification en microscopie électronique de six types cellulaires dans l'antéhypophyse du Rat à l'aide d'une technique de coloration par le mélange acide chromique-phosphotungstique. CR Acad Sci Paris D 266:153–155Google Scholar
  42. Schneider DL, Burnside J, Gorga FR, Nettleton CJ (1978) Properties of the membrane proteins of rat liver lysosomes. Biochem J 176:75–82PubMedGoogle Scholar
  43. Schrével J, Gros D, Monsigny M (1981) Cytochemistry of cell glycoconjugates. Prog Histochem Cytochem 14 No 2:1–269PubMedGoogle Scholar
  44. Spicer SS, Schulte BA, Thomopoulos GN, Parmley RT, Takagi M (1983) Cytochemistry of complex carbohydrates by light and electron microscopy. Available methods and their application. In: Wagner BM, Fleischmajer R, Kaufman N (eds) Connective tissue diseases. Williams and Wilkins, Baltimore, pp 163–211Google Scholar
  45. Thiéry J-P (1967) Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J Microsc (Paris) 6:987–1018Google Scholar
  46. Thiéry J-P, Rambourg A (1974) Cytochimie des polysaccharides. J Microsc (Paris) 21:225–232Google Scholar
  47. Thomopoulos GN, Schulte BA, Spicer SS (1983) The influence of embedding media and fixation on the post-embedment ultrastructural demonstration of complex carbohydrates. I. Morphology and periodic acid-thiocarbohydrazide-silver proteinate staining ofvicinal diols. Histochem J 15:763–784CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • W. F. Neiss
    • 1
  1. 1.Anatomisches Institut der Universität WürzburgWürzburgGermany

Personalised recommendations