Skip to main content
Log in

Glycogen, its chemistry and morphological appearance in the electron microscope. III. Identification of the tissue ligands involved in the glycogen contrast staining reaction with the osmium (VI)-iron(II) complex

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Synopsis

By application of appropriate blocking reactions (acetylation, de-amination, methylation and NaHSO3-treatment) it is demonstrated that the tissue ligands involved in the selective glycogen contrast staining reaction with the OsVI. FeII complex (known to be present in the combination K2OsO K4 4Fe(CN)6) are the glycogen C2−C3 di-hydroxyl groups. Deliberate conversion of the diols into di-aldehydes and (di-)carboxyl groups by the application of specific oxidative agents followed, by application of the OsVI.FeII-complex results morphologically in identical selective contrast staining of glycogen.

By applying appropriate blocking reactions to such pre-oxidized aldehyde fixed glycogen, evidence is accumulated that K2OsO4 and K3Fe(CN)6 are unable to oxidize diols, whereas OsO4 and H2O2 are able to convert diols into carboxyl groups.

From these results it is concluded that in the combination K2OsO K4 4Fe(CN)6 the OsVI.FeII complex reacts with unchanged diols in the glycogen, whereas the OsO4 in the combination OsO K4 4Fe(CN)6 can petentially create carboxyl groups in the aldehydefixed glycogen.

The addition of urea to the two glycogen contrasting combinations (K2OsO K4 4Fe(CN)6 or OsO K4 4Fe(CN)6), also emphasizes that, although morphologically both combinations produceidentical contrast stained glycogen, chemically the contrast staining is apparently obtained in a different way, as urea prevented the contrast for mation in the glycogen by the combination K2OsO K4 4Fe(CN)6, but not by the combination OsO K4 3Fe(CN)6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angyal, S. J. &James, K. (1971). Oxidation of carbohydrates with chromium trioxide in acetic acid. II. Acetals, a new synthesis of ketoses.Aust. J. Chem. 24, 1219–27.

    Google Scholar 

  • De Bruijn, W. C. (1973). Glycogen, its chemistry and morphologic appearance in the electron microscope. I. A modified OsO4 fixative which selectively contrasts glycogen.J. Ultrastruct. Res. 42, 29–50.

    Google Scholar 

  • De Bruijn, W. C. &Den Breejen, P. (1973). Selective glycogen contrast by hexavalent osmium oxide compounds. In.Electron Microscopy and Cytochemistry (eds. E. Wisse, W. Th. Daems, I. Molenaar & P. van Duijn)., pp. 259–62. Amsterdam, North-Holland.

    Google Scholar 

  • De Bruijn, W. N. &Den Breejen, P. (1975). Glycogen, its chemistry and morphological appearance in the electron microscope. II. The complex formed in the selective contrast staining of glycogen.Histochem. J. 7, 205–29.

    Google Scholar 

  • Cogliati, R. &Gautier, A. (1973). Mise en évidence de l'ADN et des polysaccharides à l'aide d'un nouveau réactif'de type Schiff.C. r. Acad. Sci. Paris, Série D 276, 3041–4.

    Google Scholar 

  • Collin, R. J. &Griffith, W. P. (1974). Mechanism of tissue component staining by osmium tetroxide.J. Histochem. Cytochem. 22, 992–3.

    Google Scholar 

  • Criegée, R., Marchand, B. &Wannowius, H. (1942). Zur Kenntnis der organischen Osmiumverbindungen.Ann. Chem. 550, 98–104.

    Google Scholar 

  • Dvoràk, A. M., Hammond, M. E., Dvoràk, H. F. &Karnovsky, M. J. (1972). Loss of cell surface material from peritoneal exudate cells associated with lymphocyte-mediated inhibition of macrophage migration from capillary tubes.Lab. Invest. 27, 561–74.

    Google Scholar 

  • Finar, I. L. (1965).Organic Chemistry, Vol. I New York: John Wiley.

    Google Scholar 

  • Gautier, A., Cogliati, R., Schreyer, M. &Fakan, J. (1973) ‘Feulgen-type’ and ‘PAS-type’ reactions at the ultrastructural level. InElectron Microscopy and Cytochemistry (eds. E. Wisse, W. Th. Daems, I. Molenaar & P. van Duijn), pp. 271–4. Amsterdam: North-Holland.

    Google Scholar 

  • Geddes, R. (1971). Studies on native glycogen. 2. Observations on metabolic inhomogeneity.Int. J. Biochem. 2, 657–60.

    Google Scholar 

  • Gottschalk, A. &Bhargava, A. S. (1972). Submaxillary gland glycoproteins. In:Glycoproteins. Their composition, structure, and function (ed. A. Gottschalk), pp. 810–25. Amsterdam, London, New York: Elsevier.

    Google Scholar 

  • Green, J. W. (1957). Acids and oxidation products. In:The Carbohydrates. Chemistry, Biochemistry, Physiology (ed. W. Pitman). New York: Academic Press.

    Google Scholar 

  • Horobin, R. W. &Murgatroyd, L. B. (1971). The staining of glycogen with Best's carmine and similar hydrogen bonding dyes. A mechanistic study.Histochem. J. 3, 1–9.

    Google Scholar 

  • Kent, P. W. (1967). Structure and function of glycoprotein. In:Essays in Biochemistry, Vol. III (eds. P. N. Campbell & G. D. Greville), pp. 109–13. New York, London: Academic Press.

    Google Scholar 

  • Kugler, J. H. (1967). Correlation of the glycogen concentration in rat liver and the appearance of glycogen and agranular endoplasmic reticulum.J. R. microsc. Soc. 86, 285–96.

    Google Scholar 

  • Lillie, R. D. (1954).Histopathologic Technic and Practical Histochemistry, pp. 160, 161, 275. New York: McGraw-Hill.

    Google Scholar 

  • Litman, R. B. &Barrnett, R. J. (1972). The mechanism of the fixation of tissue components by osmium tetroxide via hydrogen bonding.J. Ultrastruct. Res. 38, 63–86.

    Google Scholar 

  • Lomako, J. (1971). The role of protein in the structure of glycogen.Acta Biochim. Polon. 18, 261–9.

    Google Scholar 

  • Malinin, G. I. (1970). Metachromatic staining of sodium bisulfide addition derivative of glycogen.J. Histochem. Cytochem. 18, 834–41.

    Google Scholar 

  • Meyer, F., Heilmeyer, L. M. G., Haschke, R. H. &Fischer, E. R. (1970). Control of phosphorylase activity in a muscle glycogen particle. I. Isolation and characterization of the protein-glycogen complex.J. biol. Chem. 245, 6642–8.

    Google Scholar 

  • Millonig, G. &Marinozzi, V. (1968). Fixation and embedding in electron microscopy. In:Advances in Optical and Electron Microscopy, Vol. II (eds. R. Barer & V. E. Cosslett), pp. 251–336. London, New York: Academic Press.

    Google Scholar 

  • Moody, G. J. (1964). The action of hydrogen peroxide on carbohydrates and related compounds.Adv. Carbohydrate Chem. 19, 149–79.

    Google Scholar 

  • Murgatroyd, L. B. (1970). Mechanism of glycogen staining by Best's carmine and other dyes.J. Med. Lab. Technol. 27, 512–27.

    Google Scholar 

  • Ovadia, M. &Stoward, P. J. (1971). Some quantitative histochemical studies on the periodic acid oxidation of glycogenin situ.Histochem. J. 3, 233–40.

    Google Scholar 

  • Pearse, A. G. E. (1960).Histochemistry. Theoretical and Applied, Vol. I, 2nd Edn, pp. 617, 243, 832. London: Churchill.

    Google Scholar 

  • Pearse, A. G. E. (1972).Histochemistry. Theoretical and Applied, Vol. II, 3rd Edn, pp. 1275–6. London: Churchill Livingstone.

    Google Scholar 

  • Rambourg, A. (1973). Staining of intracellular glycoproteins. In:Electron Microscopy and Cytochemistry (eds. E. Wisse, W. Th. Daems, I. Molenaar & P. van Duijn), pp. 245–53. Amsterdam: North-Holland.

    Google Scholar 

  • Rappay, G. Y. &Van Duijn, P. (1965). Chlorous acid as an agent for blocking tissue aldehydes.Stain Technol. 40, 275–7.

    Google Scholar 

  • Schade, H. A. R. (1973). On the staining of glycogen for electron microscopy with polyacids of tungsten and molybdenum. I. Direct staining of sections of osmium-fixed and Epon-embedded mouse liver with aqueous solutions of phosphotungstic acid (PTA). In:Electron Microscopy and Cytochemistry (eds. E. Wisse, W. Th. Daems, I. Molenaar & P. van Duijn), pp. 263–6. Amsterdam North-Holland.

    Google Scholar 

  • Seligman, A. M., Wasserkrug, H. L. &Hanker, J. S. (1966). A new staining method (OTO) for enhancing contrast of lipid-containing membranes and droplets in osmium tetroxide-fixed tissue with osmophilic thiocarbohydrazide (TCH).J. Cell Biol. 30, 424–32.

    Google Scholar 

  • Sharon, N. (1974). Glycoproteins.Scient. Am. 230, 78–86.

    Google Scholar 

  • Thiéry, J.-P. (1967). Mise en évidence des polysaccharides sur coupes fines en microscopie électronique.J. Microscopie 6, 987–1018.

    Google Scholar 

  • Venable, J. H. &Coggeshall, R. (1965). A simplified lead citrate stain for use in electron microscopy.J. Cell Biol. 25, 407–8.

    Google Scholar 

  • Wanson, J.-C. &Drochmans, P. (1968). Rabbit skeletal muscle glycogen. A morphological study of glycogen β-particles isolated by the precipitation-centrifugation method.J. Cell Biol. 38, 130–49.

    Google Scholar 

  • Wanson, J.-C., Drochmans, P. &Mosselmans, R. (1970). Intervention du reticulum sarcoplasmique dans le metabolism du glycogene. In:Microscopie électronique; 7th Intern. Congress, Grenoble, Vol. III (ed. P. Favard), pp. 791–2. Paris: Société Français de Microscopie électronique.

    Google Scholar 

  • Watson, M. L. (1958). Staining of tissue sections for electron microscopy with heavy metals.J. biophys. biochem. Cytol. 4, 475–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Bruijn, W.C., Den Breejen, P. Glycogen, its chemistry and morphological appearance in the electron microscope. III. Identification of the tissue ligands involved in the glycogen contrast staining reaction with the osmium (VI)-iron(II) complex. Histochem J 8, 121–142 (1976). https://doi.org/10.1007/BF01007164

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007164

Keywords

Navigation