Skip to main content
Log in

Electronic damping of dislocations and kinetic phenomena in superconductors under plastic deformation

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Interaction of a moving screw dislocation with conduction electrons is considered in the conventional pure superconductors. At temperaturesT≪T c , both “slow” dislocations are considered, which interact only with thermally excited quasiparticles, and “fast” dislocations which also break the Cooper pairs. Near the critical temperature, two limiting cases are considered depending on the relation between Meissner penetration depth and anomalous skin-layer depth for the dislocation-induced electromagnetic field. Power dissipation dependence on temperature and dislocation velocity is obtained. Due to low field intensity in the short-wave part of spectrum, the superconducting state is shown not to be destructed by a moving dislocation in a broad range of temperatures. Non-equilibrium states of electronic system created by the dislocation field are analyzed in the paper. With this purpose, Eliashberg’s kinetic equation for a multi-mode excitation source is used. Dislocation field is shown to reduce the order parameter whenT≪T c , or stimulate superconductivity when(T−T c )/T c≪ 1. Damping reduction due to stimulation effect is discussed. Power dissipation dependence on the dislocations concentration in non-equilibrium state is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Meissner, M. Polanyi, and E. Schmid,Z. Phys. B 66, 477 (1930).

    Article  ADS  Google Scholar 

  2. V. I. Startsev, V. V. Pustovalov, and V. S. Fomenko,Proc. Inter. Conf. Strength Metals and Alloys, Tokyo (1967) Suppl. Trans. Inst. Met. (1968), V.9, p. 840.

  3. H. Kojima and T. Suzuki,Phys. Rev. Lett. 21, 896 (1968).

    Article  ADS  Google Scholar 

  4. G. Kostorz,Phys. Stat. Sol. B 58, 8 (1973).

    Google Scholar 

  5. G. P. Huffman and N. Louat,Phys. Rev. Lett. 24, 1055 (1970).

    Article  ADS  Google Scholar 

  6. M. I. Kaganov and V. D. Natsik,Zh. Eksp. Teor. Fiz. Pis’ma 11, 550 (1970) [Sov. Phys. JETP Lett. 11, 379 (1970)].

    ADS  Google Scholar 

  7. V. G. Baryakhtar, E. I. Druinski, and I. I. Falko,Fiz. Metalov i Metalovedenie 33, 5 (1972).

    Google Scholar 

  8. V. V. Menyailenko and S. V. Molotkov,Fiz. Nizk. Temp. 10, 1257 (1984).

    Google Scholar 

  9. R. A. Vardanian and Yu. A. Osip’yan,Zh. Eksp. Teor. Fiz. 94, 291 (1988) [Sov. Phys. JETP 67, 1682 (1988)].

    Google Scholar 

  10. V. I. Startsev,Dislocations in Solids Vol. 6, Applications and Recent Advances, F. R. N. Nabarro (Ed.), North-Holland, Amsterdam (1983), p. 143.

    Google Scholar 

  11. K. D. Chaudhuri and C. K. Subramaniam,J. Low Temp. Phys. 66, 25 (1987).

    Article  ADS  Google Scholar 

  12. T. Suzuki, H. Yoshinaga, and S. Takeuchi,Dislocation Dynamics and Plasticity, Springer, New York (1991), ch. 3.

    Google Scholar 

  13. M. I. Kaganov, V. Ya. Kravchenko, and V. D. Natsik,Usp. Fiz. Nauk 111, 655 (1973) [Sov. Phys. Usp. 16, 878 (1974)].

    Google Scholar 

  14. J. P. Hirth and J. Lothe,Theory of Dislocations, Wiley, New York (1974), ch. 1.

    Google Scholar 

  15. V. L. Gurevich, I. G. Lang, and S. T. Pavlov,Zh. Eksp. Teor. Fiz. 59, 1679 (1970) [Sov. Phys. JETP 32, 914 (1971)].

    Google Scholar 

  16. A. B. Pippard,Phil. Mag. 46, 1104 (1955).

    Google Scholar 

  17. C. KittelQuantum Theory of Solids, Wiley, New York (1963), ch. 17.

    Google Scholar 

  18. V. L. Gurevich,Zh. Eksp. Teor. Fiz. 37, 11 (1959) [Sov. Phys. JETP 10, 51 (1960)].

    Google Scholar 

  19. V. P. Silin,Zh. Eksp. Teor. Fiz. 38, 977 (1960) [Sov. Phys. JETP 11, 703 (1960)].

    Google Scholar 

  20. Yu. M. Gal’perin,Zh. Eksp. Teor. Fiz. 74, 1126 (1978) [Sov. Phys. JETP 47, 591 (1978)].

    Google Scholar 

  21. V. M. Kontorovich,Usp. Fiz. Nauk 142, 256, (1984) [Sov. Phys. Usp. 27, 134 (1984)].

    Google Scholar 

  22. R. A. Vardanian and T. V. Zakarian,Phys. Lett. A 160, 465 (1991).

    Article  ADS  Google Scholar 

  23. V. Ya. Kravchenko,Fiz. Tverd. Tela 8, 927 (1966) [Sov. Phys. Solid State,8, 740 (1966)].

    Google Scholar 

  24. T. Holstein, Appendix, in B. Tittman and H. Bömmel,Phys. Rev. 151, 178 (1966).

    Article  Google Scholar 

  25. G. P. Huffman and N. Louat,Phys. Rev. 176, 773 (1968).

    Article  ADS  Google Scholar 

  26. A. D. Brailsford,Phys. Rev. 189, 959 (1969).

    Article  ADS  Google Scholar 

  27. A. M. Grishin, E. A. Kaner, and E. P. Fel’dman,Zh. Eksp. Teor. Fiz. 70, 1445 (1967) [Sov. Phys. JETP 43, 753 (1976)].

    Google Scholar 

  28. B. Geilikman and V. Kresin,Kinetic and Non Stationary Phenomena in Superconductors, Wiley, New York (1974).

    Google Scholar 

  29. Yu. M. Gal’perin,Zh. Eksp. Teor. Fiz. 67, 2195 (1974) [Sov. Phys. JETP 40, 1088 (1974)].

    Google Scholar 

  30. K. Sharnberg,J. Low Temp. Phys. 30, 229 (1978).

    Article  ADS  Google Scholar 

  31. A. A. Abrikosov,Fundamentals of the Theory of Metals, North-Holland, Amsterdam (1988).

    Google Scholar 

  32. G. M. Eliashberg and B. I. Ivlev, Theory of Superconductivity Stimulation, inNon-equilibrium Superconductivity, D. N. Langenberg and A. I. Larkin (Eds.), Amsterdam (1986).

  33. A. H. Dayem and J. J. Wiegand,Phys. Rev. 155, 419 (1967).

    Article  ADS  Google Scholar 

  34. G. M. Eliashberg,Zh. Eksp. Teor. Fiz. Pis’ma 11, 186 (1970) [Sov. Phys. JETP Lett. 11, 114 (1970)].

    ADS  Google Scholar 

  35. G. M. Eliashberg,Zh. Eksp. Teor. Fiz. 61, 1254 (1971) [Sov. Phys. JETP 34, 668 (1972)].

    Google Scholar 

  36. C. S. Owen and D. J. Scalapino,Phys. Rev. Lett. 28, 1559 (1972).

    Article  ADS  Google Scholar 

  37. R. A. Vardanian and B. I. Ivlev,Zh. Eksp. Teor. Fiz. 65, 2316 (1973) [Soc. Phys. JETP 38, 1162 (1974)].

    Google Scholar 

  38. B. I. Ivlev, S. G. Lisitsyn, and G. M. Eliashberg,J. Low Temp. Phys. 10, 449 (1973).

    Article  ADS  Google Scholar 

  39. R. Truell, C. Elbaum, and B. B. Chick,Ultrasound Methods in Solid State Physics, Academic Press, New York (1969), ch. 2.

    Google Scholar 

  40. L. D. Landau and E. M. Lifshitz,Fluid Mechanics, 2nd ed., Pergamon Press, Oxford (1980), ch. 8.

    Google Scholar 

  41. L. D. Landau and E. M. Lifshitz,Theory of Elasticity, Pergamon Press, New York (1970), ch. 4.

    Google Scholar 

  42. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinski,Methods of Quantum Field Theory in Statistical Physics, Prentice-Hall, Englewood Cliffs, New Jersey (1963), ch. 7.

    MATH  Google Scholar 

  43. D. C. Mattis and J. Bardeen,Phys. Rev. 111, 412 (1958).

    Article  ADS  MATH  Google Scholar 

  44. I. M. Khalatnikov and A. A. Abrikosov,Phil. Mag. Suppl. 8, 45 (1959).

    Google Scholar 

  45. I. E. Bulyzhenkov and B. I. Ivlev,Zh. Eksp. Teor. Fiz. 70, 1405 (1976) [Sov. Phys. JETP 43, 731 (1976)].

    Google Scholar 

  46. I. E. Bulyzhenkov and B. I. Ivlev,Zh. Eksp. Teor. Fiz. 71, 1112 (1976) [Sov. Phys. JETP 44, 613 (1976)].

    Google Scholar 

  47. A. D. Brailsford,J. Appl. Phys. 43, 1380 (1972).

    Article  ADS  Google Scholar 

  48. V. L. Al’shits and V. L. Indenbom,Usp. Fiz. Nauk 115, 3 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kteyan, A.A., Vardanian, R.A. Electronic damping of dislocations and kinetic phenomena in superconductors under plastic deformation. J Low Temp Phys 109, 369–396 (1997). https://doi.org/10.1007/BF02396739

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02396739

Keywords

Navigation