Skip to main content
Log in

Mechanism of Solid-Solution Hardening: Quasi-Localization of Dislocation Kinks

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The sensitivity of the mechanical properties of materials to violations of the translational invariance of the crystal lattice makes it possible to manipulate these properties in the desired direction by doping or creating solid solutions. In this paper, we theoretically study the mechanisms of such manipulation in relation to materials in which the dislocation mobility is controlled mainly by the potential relief of the crystal lattice, the so-called Peierls relief. Due to the concentration of alloying atoms in dislocation nuclei, which play the role of traps for these atoms, the dynamic properties of the dislocations change, which also leads to modification of the macroscopic mechanical properties of the material. The theory of the doping effect on the kink mechanism for overcoming the Peierls barriers is constructed taking into account the disordered content of solution atoms in dislocation nuclei. In this case, the direct description of the kinetics of elementary processes characteristic of kinks is replaced by a statistical description. The multidirectional effect of fluctuations in the distribution of solution atoms, which increase the frequency of the formation of kink pairs but hinder the propagation of kinks along dislocation lines, is considered. The inhibition of kinks can lead to an anomalous character of their mobility, called quasi-localization. The conditions for the predominance of an accelerating or decelerating factor that correspond in macroscopic terms to hardening or softening of the material are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. E. Pink and R. J. Arsenault, Prog. Mater. Sci. 24, 1 (1979).

    Article  Google Scholar 

  2. P. Astie, J. P. Peyrade, and P. Groh, Scr. Metall. 16, 977 (1982).

    Article  CAS  Google Scholar 

  3. D. Caillard, Acta Mater. 61, 2793 (2013).

    Article  CAS  Google Scholar 

  4. P. Chomel and J. P. Cottu, Acta Mater. 30, 1481 (1982).

    Article  CAS  Google Scholar 

  5. C. Gupta, Phys. Status Solidi A 206, 685 (2009). https://doi.org/10.1002/pssa.200824289

    Article  CAS  Google Scholar 

  6. Y.-J. Hu, M. R. Fellinger, B. G. Butler, J. D. Paramore, J. P. Ligda, Ren. Chai, Z. Z. Fang, S. C. Middlemas, and K. J. Hemker, Int. J. Refract. Met. Hard Mater. 75, 248 (2018). https://doi.org/10.1016/j.ijrmhm.2018.04.021

    Article  CAS  Google Scholar 

  7. K. Okazaki, J. Mater. Sci. 31, 1087 (1996).

    Article  CAS  Google Scholar 

  8. P. I. Raffo, J. Less-Common Met. 17, 133 (1968).

    Article  Google Scholar 

  9. L. Romaner and C. Ambrosch-Draxl, Phys. Rev. Lett. 104, 195503 (2010). https://doi.org/10.1103/PhysRevLett.104.195503

    Article  CAS  Google Scholar 

  10. Y. Zhao and J. Marian, Model. Simul. Mater. Sci. Eng. 26, 045002 (2018). https://doi.org/10.1088/1361-65Xaaaecf

    Article  Google Scholar 

  11. A. Vaid, D. Wei, E. Bitzek, S. Nasiri, and M. Zaiser, Acta Mater. 236, 118095 (2022). https://doi.org/10.1016/j.actamat.2022.118095

    Article  CAS  Google Scholar 

  12. G. D. Samolyuk, Y. N. Osetsky, and R. E. Stoller, J. Phys.: Condens. Matter 25, 025403 (2012). https://doi.org/10.1088/0953-8984/25/2/025403

    Article  CAS  Google Scholar 

  13. G. Hachet, D. Caillard, L. Ventelon, and E. Clouet, Acta Mater. 222, 117440 (2022). https://doi.org/10.1016/j.actamat.2021.117440

    Article  CAS  Google Scholar 

  14. O. Barrera, D. Bombac, Y. Chen, T. D. Daff, E. Galindo-Nava, P. Gong, D. Haley, R. Horton, I. Katzarov, J. R. Kermode, C. Liverani, M. Stopher, and F. Sweeney, J. Mater. Sci. 53, 6251 (2018). https://doi.org/10.1007/s10853-017-1978-5

    Article  CAS  Google Scholar 

  15. B. V. Petukhov, Bull. Russ. Acad. Sci.: Phys. 86, 1253 (2022). https://doi.org/10.3103/S106287382210015X

    Article  CAS  Google Scholar 

  16. P. Guyot and J. E. Dorn, Can. J. Phys. 45, 983 (1967).

    Article  Google Scholar 

  17. E. Nadgorny, Prog. Mater. Sci. 31, 1 (1988).

    Article  Google Scholar 

  18. A. Seeger, Mater. Sci. Eng., A 370, 50 (2004).

    Article  Google Scholar 

  19. P. Gong, I. H. Katzarov, J. Nutter, A. T. Paxton, and W. M. Rainforth, Sci. Rep. 10, 10209 (2020). https//doi.org/https://doi.org/10.1038/s41598-020-66965-z

    Article  CAS  Google Scholar 

  20. U. Messerschmidt, Dislocation Dynamics During Plastic Deformation, Springer Series in Material Science, Ed. by R. Hull, C. Jagadish, Y. Kawazoe, et al. (Springer, Heidelberg, 2010). https://doi.org/10.1007/978-3-642-03177-9

  21. D. Caillard and J. L. Martin, Thermally Activated Mechanisms in Crystal Plastisity (Pergamon, Amsterdam, 2003).

    Google Scholar 

  22. B. V. Petukhov, Dislocation Dynamics in Crystalline Relief: Dislocation Kinks and Plasticity of Crystalline Materials (LAP, Saarbrucken, 2016) [in Russian].

    Google Scholar 

  23. H. Koizumi, H. O. K. Kirchner, and T. Suzuki, Philos. Mag. A 69, 895 (1994).

    Article  Google Scholar 

  24. A. H. W. Ngan, Philos. Mag. A 79, 1687 (1999). https://doi.org/10.1080/01418619908210387

    Article  Google Scholar 

  25. H. Mori, Mater. Trans. 55, 1531 (2014).

    Article  CAS  Google Scholar 

  26. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968; Atomizdat, Moscow, 1972).

  27. I. H. Katzarov and L. B. Drenchev, Crystals 12, 518 (2022). https://doi.org/10.3390/cryst12040518

    Article  CAS  Google Scholar 

  28. B. V. Petukhov, Fiz. Met. Metalloved. 56, 1177 (1983).

    CAS  Google Scholar 

  29. M. Wen, S. Fukuyama, and K. Yokogawa, Acta Mater. 51, 1767 (2003).

    Article  CAS  Google Scholar 

  30. Y. Wang, X. Wang, Q. Li, B. Xu, and W. Liu, J. Mater. Sci. 54, 10728 (2019). https://doi.org/10.1007/s10853-019-03564-y

    Article  CAS  Google Scholar 

  31. B. V. Petukhov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 16, 86 (2022). https://doi.org/10.1134/S1027451022010141

    Article  CAS  Google Scholar 

  32. I. H. Katzarov, L. B. Drenchev, D. L. Pashov, T. N. A. T. Zarrouk, O. Al-lahham, and A. T. Paxton, Phys. Rev. Mater. 6, 063603 (2022). https://doi.org/10.1103/PhyRevMaterials.6.063603

    Article  CAS  Google Scholar 

  33. L. D. Landau and E. M. Lifshits, Statistical Physics (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  34. I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  35. B. V. Petukhov, J. Exp. Theor. Phys. 110, 41 (2010).

    Article  CAS  Google Scholar 

  36. F. Maresca and W. A. Curtin, Acta Mater. 162, 144 (2020). https://doi.org/10.1016/j.actamat.2019.10.007

    Article  CAS  Google Scholar 

  37. H. Suzuki, in Dislocations in Solids, Vol. 4, Ed. by F. R. Nabarro (North Holland, Amsterdam, 1980), p. 191.

    Google Scholar 

  38. E. Antillon, C. Woodward, S. I. Rao, and B. Akdim, Acta Mater. 215, 117012 (2021).

    Article  CAS  Google Scholar 

  39. B. V. Petukhov, Fiz. Tverd. Tela 30, 2893 (1988).

    Google Scholar 

  40. S. Foss, D. Korshunov, and S. Zachary, An Introduction To Heavy-Tailed and Subexponential Distributions (Springer, New York, 2011). https://doi.org/10.1007/978-1-4419-9473-8

  41. Yu. L. Iunin, V. I. Nikitenko, V. I. Orlov, and B. V. Petukhov, Phys. Rev. Lett. 78, 3137 (1997). https://doi.org/10.1103/PhysRevLett.78.3137

    Article  CAS  Google Scholar 

  42. J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990). https://doi.org/10.1016/0370-1573(90)90099-N

    Article  Google Scholar 

  43. V. V. Uchaikin, Phys.—Usp. 46, 821 (2003). https://doi.org/10.1070/PU2003v046n08ABEH001324

    Article  Google Scholar 

  44. B. V. Petukhov, Fiz. Tverd. Tela 32, 1121 (1993). https://doi.org/10.3367/UFNr.0173.200308c.0847

    Article  Google Scholar 

  45. B. V. Petukhov, Fiz. Tverd. Tela 64, 1972 (2022). https://doi.org/10.21883/FTT.2022/53651.450

    Article  Google Scholar 

  46. A. Ghafarollahi and W. Curtin, Acta Mater. 215, 117078 (2021). https;//doi.org/j.actamat.2921.117o78

    Article  CAS  Google Scholar 

  47. D. Caillard, Acta Mater. 59, 4974 (2011). https://doi.org/10.1016/j.actamat.2011.04.048

    Article  CAS  Google Scholar 

  48. D. Caillard, Acta Mater. 112, 273 (2016). https://doi.org/10.1016/j.actamat.2016.04.018

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the State Assignment of the Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Petukhov.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petukhov, B.V. Mechanism of Solid-Solution Hardening: Quasi-Localization of Dislocation Kinks. J. Surf. Investig. 17, 971–977 (2023). https://doi.org/10.1134/S1027451023050087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023050087

Keywords:

Navigation