Skip to main content
Log in

Effects of finite electron mean free path on the attenuation, electromagnetic generation, and detection of ultrasonic shear waves in superconductors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Use of the general many-body formalism allows us to derive a system of equations describing the propagation of electromagnetic shear waves coupled to ultrasonic shear waves in normal and superconducting metals with arbitrary electron mean free paths. From this system of equations we derive general expressions in terms of correlation functions for the attenuation coefficient as well as for the generation and detection (radiation) efficiency of ultrasonic shear waves, assuming specular reflection. It is shown that, for arbitrary mean free path, generation and radiation efficiency are equal. Furthermore, they are related in a simple way to the residual surface resistance caused by ultrasound generation. In order to incorporate the frictional force between electrons and lattice, a reactive part of which remains finite even at T = 0, one has to introduce the current-stress tensor correlation function. The calculation of this correlation function for an impure BCS superconductor is more complicated than the calculation of the conductivity from the current-current correlation function. If suitably normalized, the electromagnetic contribution to the attenuation coefficient depends on mean free path only through the conductivity. For sufficiently short mean free path the generation and radiation efficiency in a superconductor can become equal to and even larger than the efficiency in the normal metal because the frictional force, which opposes the electromagnetic field driving the ions, is less effective in the superconducting than in the normal state. It is shown that the interpretation of experiments on the radiation efficiency in superconducting tin has to be modified when the finite electron mean free path is taken into account. Agreement between theory and experiment can still be achieved by a suitable choice of the Fermi velocity and the mean free path. The London penetration depth calculated from this Fermi velocity turns out to be smaller than generally accepted values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  2. D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).

    Google Scholar 

  3. Sang Boo Nam, Phys. Rev. 156, 470 (1967).

    Google Scholar 

  4. A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliffs, New Jersey, 1963).

    Google Scholar 

  5. A. L. Fetterand J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971).

    Google Scholar 

  6. P. B. Miller, Phys. Rev. 118, 928 (1960).

    Google Scholar 

  7. J. Halbritter, Z. Phys. 238, 466 (1970).

    Google Scholar 

  8. J. P. Turneaure and I. Weissman, J. Appl. Phys. 39, 4417 (1968).

    Google Scholar 

  9. J. J. Quinn, Phys. Lett. 25A, 522 (1967).

    Google Scholar 

  10. J. Halbritter, J. Appl. Phys. 42, 82 (1971).

    Google Scholar 

  11. C. Passow, Phys. Rev. Lett. 28, 427 (1972).

    Google Scholar 

  12. A. A. Golub, Fiz. Tverd. Tela 15, 1468 (1973) [Sov. Phys.—Solid State 15,988 (1973)].

    Google Scholar 

  13. E. Kartheuser and S. Rodriguez, J. Appl. Phys. 47, 700 (1976).

    Google Scholar 

  14. L. P. Kadanoff and I. I. Falko, Phys. Rev. 136, A1170 (1964).

    Google Scholar 

  15. K. Scharnberg, J. Appl. Phys. 48, 3462 (1977).

    Google Scholar 

  16. B. Abeles, Phys. Rev. Lett. 19, 1181 (1967).

    Google Scholar 

  17. A. Zemel and Y. Goldstein, Phys. Rev. B 9, 1499 (1974).

    Google Scholar 

  18. Y. Goldstein, S. Barzilai, and A. Zemel, Phys. Rev. B 10, 5010 (1974).

    Google Scholar 

  19. A. Zemel, in Proc. IEEE Ultrasonic Symposium 519 (1974).

  20. E. R. Dobbs, in Physical Acoustics Vol. X, W. P. Mason and R. N. Thurston, eds. (Academic Press, 1973), p. 127.

  21. I. M. Khalatnikov and A. A. Abrikosov, Adv. Phys. 8, 65 (1958).

    Google Scholar 

  22. W. D. Wallace, Int. J. Nondestructive Test. 2, 309 (1971).

    Google Scholar 

  23. G. Turner, R. L. Thomas, and D. Hsu, Phys. Rev. B 3, 3097 (1971).

    Google Scholar 

  24. D. Hsu, R. L. Thomas, Phys. Rev. B 5, 4668 (1972).

    Google Scholar 

  25. N. K. Batra, R. L. Thomas, K. C. Lee, and A. M. de Graaf, Phys. Rev. B 8, 5473 (1973).

    Google Scholar 

  26. R. H. Bidgood, M. J. Lea, and E. R. Dobbs, J. Phys. F: Metal Phys. 7, 1791 (1977).

    Google Scholar 

  27. R. L. Thomas, M. J. Lea, E. J. Sendezera, E. R. Dobbs, K. C. Lee, and A. M.de Graaf, Phys. Rev. B 14, 4889 (1976).

    Google Scholar 

  28. R. C. Alig, Phys. Rev. 178, 1050 (1969).

    Google Scholar 

  29. P. D. Southgate, J. Appl. Phys. 40, 22 (1969).

    Google Scholar 

  30. J. Mertsching, Phys. Stat. Sol. 14, 3 (1966); 26, 9 (1968); 37, 465 (1970).

  31. J. R. Cullen and R. A. Ferrell, Phys. Rev. 146, 282 (1966).

    Google Scholar 

  32. J. R. Leibowitz, Phys. Rev. 133, A84 (1964); R. David, Philips Res. Rep. 19, 524 (1964).

    Google Scholar 

  33. L. T. Claiborne and R. W. Morse, Phys. Rev. 136, A893 (1964).

    Google Scholar 

  34. D. P. Almond, M. J. Lea, and E. R. Dobbs, Proc. R. Soc. Lond. A 343, 537 (1975).

    Google Scholar 

  35. A. R. Macintosh, Proc. of the VII Int. Conf. on Low-Temperature Physics, G. M. Graham and A. C. Hollis Hallett, eds. (Univ. of Toronto Press, Toronto, 1961).

    Google Scholar 

  36. K. Fossheim, Phys. Lett. 19, 81 (1967); K. Fossheim and B. Torvatn, J. Low Temp.Phys. 1, 341 (1969).

    Google Scholar 

  37. M. Yokata, H. Kushibe, and T. Tsuneto, Prog. Theor. Phys. 36, 237 (1966).

    Google Scholar 

  38. E. I. Blount, Phys. Rev. 114, 418 (1959).

    Google Scholar 

  39. T. Tsuneto, Phys. Rev. 121, 402 (1961).

    Google Scholar 

  40. C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963).

    Google Scholar 

  41. A. B. Pippard, Proc. Roy. Soc. A 257, 165 (1960).

    Google Scholar 

  42. J. R. Leibowitz, Phys. Rev. 136, A22 (1964).

    Google Scholar 

  43. K. Maki, Phys. Rev. 148, 370 (1966).

    Google Scholar 

  44. F. B. McLean and A. Houghton. Ann. Phys. (N.Y.) 48, 43 (1968).

    Google Scholar 

  45. R. W. Cohen, Phys. Lett. 29A, 85 (1969).

    Google Scholar 

  46. E. S. Bliss and J. H. Rayne, Phys. Rev. 177, 673 (1969).

    Google Scholar 

  47. J. R. Leibowitz, T. L. Francaville, and E. M. Alexander, Phys. Rev. B 11, 3362 (1975).

    Google Scholar 

  48. A. B. Pippard, Phil. Mag. 46, 1104 (1955).

    Google Scholar 

  49. E. Fawcett, in The Fermi Surface, W. A. Harrison and M. B. Webb, eds. (Wiley, New York, 1960), p. 198.

    Google Scholar 

  50. R. Meservey and B. B. Schwartz, in Superconductivity, R. D. Parks, ed. (Dekker, New York, 1969), p. 174.

    Google Scholar 

  51. P. C. L. Tai, M. R. Beasley, and M. Tinkham, Phys. Rev. B 11, 411 (1975).

    Google Scholar 

  52. E. A. Page and J. R. Leibowitz, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scharnberg, K. Effects of finite electron mean free path on the attenuation, electromagnetic generation, and detection of ultrasonic shear waves in superconductors. J Low Temp Phys 30, 229–263 (1978). https://doi.org/10.1007/BF00115526

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115526

Keywords

Navigation