Skip to main content
Log in

Elastic low temperature anomalies of solid hydrogen crystallites

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The property of solid hydrogen (H2, HD and D2) not to wet an attractive substrate, can be used to prepare micron sized hydrogen crystals. We used surface acoustic waves (SAW) in the range from 100 MHz to 1 GHz to study the elastic properties of the crystallite-substrate system. The growth of crystallites at temperatures around 3 K can be monitored by the resonant coupling of elastic eigenmodes to the SAW. We observed drastic changes of the resonant coupling for all isotopes when the temperature was varied between 0.15 K and 2.4 K. Possible origins of this unexpecied effect are discussed including a temperature variation of the wetting behavior. For H2 the impact of the ordering transition of ortho-H2 was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Unless explicitely specified, we denote by hydrogen all three stable isotopes H2, HD and D2.

  2. A. D. Migone, A. Hofmann, J. G. Dash, and O. E. Vilches,Phys. Rev. B 37, 5440 (1988).

    Article  ADS  Google Scholar 

  3. P. Leiderer and U. Albrecht,J. Low Temp. Phys. 89, 229 (1992).

    Article  ADS  Google Scholar 

  4. U. Albrecht, P. Evers, and P. Leiderer,Surf. Sci. 283, 419 (1993).

    Article  ADS  Google Scholar 

  5. R. N. J. Conradt, U. Albrecht, S. Herminghaus, and P. Leiderer,Physica B 194–196 679 (1994).

    Article  Google Scholar 

  6. J. Classen, K. Eschenröder, and G. Weiss,Ann. Phys. (Leipzig) 4, 1 (1995).

    ADS  Google Scholar 

  7. J. Classen, K. Eschenröder, and G. Weiss,Phys. Rev. B 52, 11475 (1995).

    Article  ADS  Google Scholar 

  8. M. Wagner and D. M. Ceperley,J. Low Temp. Phys. 102, 275 (1996).

    Article  ADS  Google Scholar 

  9. M. Maruyama, M. Bienfait, F. C. Liu, Y. M. Liu, O. E. Vilches, and F. Rieutord,Surf. Sci. 283, 333 (1993).

    Article  ADS  Google Scholar 

  10. J. Classen, K. Eschenröder, and G. Weiss,Physica B 219&220, 678 (1996).

    Article  Google Scholar 

  11. G. Weiss, K. Eschenröder, H. Kiefhaber, and J. Classen,Czech. J. Phys. 46, Suppl. Sl. 527 (1996).

    Article  Google Scholar 

  12. W. R. Smith, inPhysical Acoustics Vol. XV, W. P. Mason and R. N. Thurston (Eds.), Academic Press, London (1981).

    Google Scholar 

  13. B. A. Auld,Acoustic Fields and Wares in Solids Vol. II, 2nd edition, R. E. Krieger Publ. Co., Malabar, Florida (1990).

    Google Scholar 

  14. P. A. Bezuglyi and R. Kh. Minyafaef,Sov. Phys. Solid State 9, 2854 (1968); P. A. Bezuglyi, R. O. Plakhotin, and L. M. Tarasenko,Soc. Phys. Solid State 13, 250 (1971).

    Google Scholar 

  15. R. Wanner and H. Meyer,J. Low Temp. Phys. 11, 715 (1973).

    Article  ADS  Google Scholar 

  16. “Simultancous” means that the measurements were done in a rapid succession of different frequency settings. The time required to cycle through the six frequencies was about 1 2 s. i.e., very short compared to typical time scales of our experiments of several minutes or even hours.

  17. A. A. Maradudin, P. Ryan, and A. R. McGurn,Phys. Rev. B 38, 3068 (1988).

    Article  ADS  Google Scholar 

  18. B. Djafari-Rouhani and A. A. Maradudin,Sol. State Commun. 73, 173 (1990).

    Article  ADS  Google Scholar 

  19. A. V. Shehegrov and A. A. Maradudin,Appl. Phys. Lett. 67, 3090 (1995).

    Article  ADS  Google Scholar 

  20. V. P. Plessky and A. W. Simonian,Phys. Lett. A 155, 281 (1991).

    Article  ADS  Google Scholar 

  21. E. A. Garova, A. P. Mayer, and A. A. Maradudin,Verhandl. DPG (VI) 31, 1343 (1996); E. A. Garova, A. P. Mayer, and A. A. Maradudin, to be published.

    Google Scholar 

  22. H. N. Lin, H. J. Maris, L. B. Freund, K. Y. Lee, H. Luhn, and D. P. Kern,J. Appl. Phys. 73, 37 (1993).

    Article  ADS  Google Scholar 

  23. I. F. Silvera,Rev. Mod. Phys. 52, 393 (1980).

    Article  ADS  Google Scholar 

  24. At the phase transition the quantization axes of theJ=1 rotational momenta orient along the four body diagonals of the fcc lattice, where the molecules belonging to different orientations occupy the four interpenetrating simple cubic sublattices.

  25. R. Wanner, H. Meyer, and R. L. Mills,J. Low Tentp. Phys. 13, 337 (1973).

    Article  ADS  Google Scholar 

  26. R. Banke, M. Calkins, and H. Meyer,J. Low Temp. Phys. 61, 193 (1985).

    Article  ADS  Google Scholar 

  27. J. T. Birmingham, P. L. Richards, and H. Meyer,J. Low Temp. Phys. 103, 183 (1996).

    Article  ADS  Google Scholar 

  28. K. Eschenröder, H. Kiefhaber, and G. Weiss, to be published.

  29. M. Wagner and D. M. Ceperley,J. Low Temp. Phys. 94, 161 (1994).

    Article  ADS  Google Scholar 

  30. V. V. Goldman,J. Low Temp. Phys. 36, 521 (1979).

    Article  ADS  Google Scholar 

  31. S. I. Shevchenko,Fiz. Nik. Temp. 11, 660 (1985) [Soc. J. Low. Temp. Phys.,11, 363 (1985)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eschenröder, K., Kiefhaber, H., Weiss, G. et al. Elastic low temperature anomalies of solid hydrogen crystallites. J Low Temp Phys 109, 163–181 (1997). https://doi.org/10.1007/BF02396730

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02396730

Keywords

Navigation