Skip to main content
Log in

Ultrasonic propagation in solid H2: The effects of orientational ordering

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A report is given of the observation below 1 K of the sound attenuation δα expected from progressive orientational ordering in hcp H2 with ortho concentrationsX<0.53. The experiments were carried out at 10 and 30 MHz. The amplitude of this effect depends on the coupling between the lattice vibrations and the molecular orientation, and should be maximum when the acoustic angular frequency ω is comparable with the orientational relaxation rate τ−1. The average rate can be roughly estimated from NMR longitudinal relaxation timeT 1 measurements. Such a maximum for δα was indeed observed in the expected temperature range. At high enough temperatures, δα was found to be proportional toT −11 . which is consistent with predictions in the high temperature limit. Furthermore, the transition between the hcp and the fcc phases forX>0.53 is studied by means of the large changes in the sound propagation at the transition, and the phase diagram thus obtained is compared with results from x-ray and pressure measurements. The new observations explain some previous discrepancies in results using different methods. The difference between solid H2 and D2 regarding the stabilization of the cubic structure above the orientational ordering transition is also discussed. Calculations of the respective energy barriers ΔE to be overcome during the martensitic transition are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. F. Silvera,Rev. Mod. Phys. 52, 393 (1980).

    Google Scholar 

  2. J. Van Kranendonk,Solid Hydrogen (Plenum Press, New York, 1983.

    Google Scholar 

  3. A. B. Harris and H. Meyer,Can. J. Phys. 63, 3 (1985).

    Google Scholar 

  4. A. F. Schuch, R. L. Mills, and D. A. Depatie,Phys. Rev. 165, 1032 (1968).

    Google Scholar 

  5. J. F. Jarvis, H. Meyer, and D. Ramm,Phys. Rev. 178, 1461 (1969).

    Google Scholar 

  6. J. V. Gates, P. R. Ganfors, B. A. Fraas, and R. O. Simmons,Phys. Rev. B 19, 3667 (1979).

    Google Scholar 

  7. M. Clouter and H. P. Gush,Phys. Rev. Lett. 15, 200 (1965).

    Google Scholar 

  8. R. Wanner, H. Meyer, and R. L. Mills,J. Low Temp. Phys. 13, 337 (1973).

    Google Scholar 

  9. N. S. Sullivan, M. Devoret, B. P. Cowan, and C. Urbina,Phys. Rev. B 17, 5016 (1978).

    Google Scholar 

  10. C. A. Garland, inPhysical Acoustics, Vol. 7, W. P. Mason and R. V. Thurston, eds. (Academic Press, New York, 1970), p. 51.

    Google Scholar 

  11. B. Luthi, T. J. Moran, and R. J. Pollina,J. Phys. Chem. Solids 31, 1741 (1970).

    Google Scholar 

  12. K. Kawasaki,Int. J. Magnetism 1, 171 (1971).

    Google Scholar 

  13. S. Washburn, M. Calkins, H. Meyer, and A. B. Harris,J. Low Temp. Phys. 53, 585 (1983).

    Google Scholar 

  14. N. S. Sullivan and D. Esteve,Physica 107(B+C), 189 (1981).

    Google Scholar 

  15. J. R. Gaines, Y. C. Shi, and J. H. Constable,Phys. Rev. B 17, 1028 (1978).

    Google Scholar 

  16. A. B. Harris,Phys. Rev. B 2, 3495 (1970).

    Google Scholar 

  17. M. Fujio, J. Hama, and T. Nakamura,Prog. Theor. Phys. 54, 293 (1975).

    Google Scholar 

  18. G. W. Smith and R. M. Housley,Phys. Rev. 117, 732 (1960).

    Google Scholar 

  19. L. I. Amstutz, H. Meyer, S. M. Myers, and D. C. Rorer,Phys. Rev. 181, 589 (1969).

    Google Scholar 

  20. J. L. Yarnell, R. L. Mills, and A. F. Schuch,Sov. J. Low Temp. Phys. 1, 366 (1975).

    Google Scholar 

  21. D. G. Haase, J. O. Sears, and R. A. Orban,Solid State Commun. 35, 891 (1980).

    Google Scholar 

  22. R. W. Hill and B. W. A. Ricketson,Phil. Mag. 45, 277 (1954).

    Google Scholar 

  23. G. Ahlers and W. H. Orttung,Phys. Rev. 133A, 1642 (1964).

    Google Scholar 

  24. A. B. Harris, S. Washburn, and H. Meyer,J. Low Temp. Phys. 50, 151 (1983).

    Google Scholar 

  25. R. Wanner and H. Meyer,J. Low Temp. Phys. 11, 715 (1973).

    Google Scholar 

  26. M. Calkins and H. Meyer,J. Low Temp. Phys. 57, 265 (1964).

    Google Scholar 

  27. B. Golding,Phys. Rev. Lett. 84, 1102 (1975).

    Google Scholar 

  28. H. Nagai and T. Nakamura,Prog. Theor. Phys. 37, 641 (1967).

    Google Scholar 

  29. J. Felsteiner,Phys. Rev. Lett. 15, 1025 (1965).

    Google Scholar 

  30. J. C. Raich and R. D. Etters,J. Phys. Chem. Solids 29, 1561 (1968).

    Google Scholar 

  31. L. H. Nosanow, cited in Ref. 30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banke, R., Calkins, M. & Meyer, H. Ultrasonic propagation in solid H2: The effects of orientational ordering. J Low Temp Phys 61, 193–211 (1985). https://doi.org/10.1007/BF00681631

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681631

Keywords

Navigation