Skip to main content
Log in

Specific heat of quench-condensed hydrogen films

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The specific heatC(X, T) of quench-condensed films of H2 has been measured as a function of ortho concentration X with 0.28<X<0.75 for coverages between 24.3 and 92.3 Å−2 at temperatures between 0.4 and 3.0 K. The films were condensed on evaporated gold substrates held at several temperaturesT. cond between 1.0 and 3.5 K. The observed specific heat is attributed to orientational ordering of the ortho-H2 molecules. For the films withX = 0.74 condensed atT cond>2.5 K, there is a peak which indicates a bulk-like ordering transition. At temperatures below the peak, there is a large contribution toC, which is not present in bulk H2, and which we attribute to short-range ordering size effects. AsT cond is decreased below 2.5 K, the shape of the specific heat curve changes, and the peak at 1.5 K is replaced by a gradual rise with a sharp drop above 2.6 K. Despite this strong dependence ofC onT cond, the entropy per molecule at 3 K is only weakly dependent onT cond and comparable to that for bulk H2. Film annealing at 3.4 K produces a change in the specific heat curve, and a study of this effect is presented. The ortho-para conversion rate of the films condensed at the various temperatures is found to be same as in bulk, well-annealed H2. As in bulk H2, the transition temperature inferred from the location of the specific heat peak or anomaly decreases withX. Unlike in bulk H2, there is no temperature hysteresis inC for any of the quench-condensed films. This implies that the ordering transitions are not accompanied by a martensitic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. F. Silvera,Rev. Mod. Phys. 52, 393 (1980).

    Google Scholar 

  2. R. W. Hill and B. W. A. Ricketson,Philos. Mag. 45, 277 (1954).

    Google Scholar 

  3. G. Ahlers and W. M. Orttung,Phys. Rev. 133, 1642 (1964).

    Google Scholar 

  4. A. F. Schuch, R. L. Mills, and D. A. Depatie,Phys. Rev. 165, 1032 (1968).

    Google Scholar 

  5. J. F. Jarvis, H. Meyer, and D. Ramm,Phys. Rev. 178, 1461 (1969).

    Google Scholar 

  6. R. Wanner, H. Meyer, and R. L. Mills,J. Low Temp. Phys. 13, 337 (1973).

    Google Scholar 

  7. R. Banke, M. Calkins, and H. Meyer,J. Low Temp. Phys. 61, 193 (1985).

    Google Scholar 

  8. W. N. Hardy, I. F. Silvera, and J. P. McTague,Phys. Rev. B 12, 753 (1975).

    Google Scholar 

  9. A. B. Harris, S. Washburn, and H. Meyer,J. Low Temp. Phys. 50, 151 (1983).

    Google Scholar 

  10. J. V. Gates, P. R. Ganfors, B. A. Fraas, and R. O. Simmons,Phys. Rev. B 19, 3667 (1974).

    Google Scholar 

  11. N. S. Sullivan, M. Devoret, B. P. Cowan, and C. Urbina,Phys. Rev. B 17, 5016 (1978).

    Google Scholar 

  12. A. B. Harris and H. Meyer,Can. J. Phys. 63, 3 (1985).

    Google Scholar 

  13. R. J. Roberts and J. G. Daunt,Phys. Lett. 33A, 353 (1970).

    Google Scholar 

  14. N. S. Sullivan, C. M. Edwards, Y. Lin, and D. Dzou,Can. J. Phys. 65, 1463 (1987).

    Google Scholar 

  15. P. Leiderer and U. Albrecht,J. Low. Temp. Phys. 89, 229 (1992).

    Google Scholar 

  16. U. Albrecht, P. Evers, and P. Leiderer,Surface Science 283, 419 (1993).

    Google Scholar 

  17. R. N. J. Conradt, U. Albrecht, S. Herminghaus, and P. Leiderer,Physica B 194–196, 679 (1994).

    Google Scholar 

  18. A. D. Migone, A. Hofmann, J. G. Dash, and O. E. Vilches,Phys. Rev. B 37, 5440 (1988).

    Google Scholar 

  19. J. Classen, K. Eschenröder, and G. Weiss,Annalen der Physik 4, 1 (1995).

    Google Scholar 

  20. R. B. Phelps, J. T. Birmingham, and P. L. Richards,J. Low Temp. Phys. 92, 107 (1993).

    Google Scholar 

  21. T. W. Kenny and P. L. Richards,Phys. Rev. Lett. 64, 2386 (1990).

    Google Scholar 

  22. T. W. Kenny and P. L. Richards,Rev. Sci. Instrum. 61, 822 (1990).

    Google Scholar 

  23. L. Duband, A. Lange, and A. Ravex,Proc. 4th European Symposium on Space Environmental and Control Systems, Florence, Italy (ESA SP-324, Paris), p. 407 (1991).

  24. Quartzdyne, Inc., Salt Lake City, UT 84123.

  25. E. E. Haller, N. P. Palaio, M. Rodder, W. L. Hansen, and E. Kreysa, inNeutron Transmutation Doping of Semiconductor Materials, edited by R. D. Larrabee (Plenum, New York, 1984), p. 21.

    Google Scholar 

  26. MSTF-3-S-N-1K-02, Mini-Systems, Inc., North Attleboro, MA, 02761.

  27. E.-T. H20E, Epoxy Technology, Inc., Billerica, MA 01821.

  28. GR-200A-100, Lake Shore Cryotronics, Inc., Westerville, OH 43081.

  29. P. F. Sullivan and G. Seidel,Phys. Rev. 173, 679 (1968).

    Google Scholar 

  30. 807B9852-01-B, Ceramaseal, New Lebanon Center, NY 12126.

  31. SC-102, Maxtek, Inc., Torrance, CA 90503.

  32. SO100, Maxtek, Inc., Torrance, CA 90503.

  33. G. J. Kellogg, P. E. Sokol, S. K. Sinha, and D. L. Price,Phys. Rev. B 42, 7725 (1990).

    Google Scholar 

  34. R. N. Thurston and K. Brugger,Phys. Rev. 133, A1604 (1963).

    Google Scholar 

  35. V. Panella and J. Krim,Phys. Rev. E 49, 4179 (1994).

    Google Scholar 

  36. D. Haase, L. R. Perrell, and A. M. Saleh,J. Low Temp. Phys. 55, 283 (1984).

    Google Scholar 

  37. H. Meyer and S. Washburn,J. Low Temp. Phys. 57, 31 (1984).

    Google Scholar 

  38. N. Steinmetz, H. Menges, J. Dutzi, H. V. Löhneysen, and W. Goldacker,Phys. Rev. B 39, 2838 (1989).

    Google Scholar 

  39. R. E. Allen and F. W. De Wette,Phys. Rev. 179, 873 (1969).

    Google Scholar 

  40. J. Van Krankendonk,Solid Hydrogen (Plenum Press, New York, 1983), p. 306.

    Google Scholar 

  41. T. R. Govers, L. Mattera, and G. Scoles,J. Chem. Phys. 72, 5446 (1980).

    Google Scholar 

  42. M. Weiner and D. L. Goodstein,Phys. Rev. Lett. 50, 193 (1983).

    Google Scholar 

  43. C. Kittel and H. Kroemer,Thermal Physics (W. H. Freeman and Co., New York, 1980). p. 162.

    Google Scholar 

  44. G. Ahlers,J. Chem. Phys. 40, 3123 (1964).

    Google Scholar 

  45. P. Pedroni, H. Meyer, F. Weinbaus, and D. Haase,Solid State Commun. 14, 279 (1974).

    Google Scholar 

  46. A. J. Berlinsky,Phys. Rev. B 12, 1482 (1975).

    Google Scholar 

  47. F. Schmidt,Phys. Rev. B 10, 4480 (1974).

    Google Scholar 

  48. D. Ramm, H. Meyer, and R. L. Mills,Phys. Rev. B l, 2763 (1970).

    Google Scholar 

  49. J. R. Cullen, D. Mukamel, S. Shtrikman, L. C. Levitt, and E. Callen,Solid State Commun. 10, 195 (1972).

    Google Scholar 

  50. A. E. Curzon and A. J. Mascall,Brit. J. Appl. Phys. 16, 1301 (1965).

    Google Scholar 

  51. R. L. Mills, J. L. Yarnell, and A. F. Schuch, 1972,LT 13, edited by K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel (Plenum, New York), Vol. II: Quantum Crystals and Magnetism, p. 203 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birmingham, J.T., Richards, P.L. & Meyer, H. Specific heat of quench-condensed hydrogen films. J Low Temp Phys 103, 183–208 (1996). https://doi.org/10.1007/BF00755976

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00755976

Keywords

Navigation