Skip to main content
Log in

Coherent optical fiber transmission

  • Laser Applications
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Expected system features, laboratory feasibility studies and current research on associated optical devices and components directed toward high performance coherent optical fiber transmission systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yamamoto and T. Kimura, Coherent optical fiber transmission systems, IEEE J. Quantum Electron. 17, no. 6 (1981) 919–935.

    Article  ADS  Google Scholar 

  2. T. Kimura and Y. Yamamoto, Progress of coherent optical fiber communication systems, Opt. Quantum Electron 15, no. 1 (1983) 1–39.

    Article  ADS  Google Scholar 

  3. S.D. Personick, Receiver design for digital fiber optic communication systems, Bell Syst. Tech. J. 52 (1973) 843–866.

    Google Scholar 

  4. Y. Yamamoto, Receiver performance evaluation of various digital optical modulation-demodulation systems in the 0.5–10 μm wavelength region, IEEE. J. Quantum Electron. 16, no. 11 (1980), 1251–1259.

    Article  ADS  Google Scholar 

  5. J. Salz, Coherent lightwave communication, AT&T Tech. J. 64 no. 10 (1985) 2153–2209.

    ADS  Google Scholar 

  6. I.P. Kaminow, Polarization in optical fibers, IEEE J. Quantum Electron. 17 no. 1 (1981) 15–22.

    Article  ADS  Google Scholar 

  7. T. Okoshi, Review of polarization-maintaining single-mode fiber, IOOC'86, 28A4-1, 1983, Tokyo.

  8. T. Kimura, M. Saruwatari and K. Otsuka, Birefringent branching filter for wideband optical FDM communications, Appl. Opt. 12, no. 2 (1973) 373–379.

    Article  ADS  Google Scholar 

  9. F.E. Goodwin, A 3.39-micron infrared optical heterodyne communication system, IEEE J. Quantum Electron. 3, no. 11 (1967) 524–531.

    Article  ADS  Google Scholar 

  10. S. Saito, Y. Yamamoto and T. Kimura, Optical heterodyne detection of directly frequency modulated semiconductor laser signals, Elect. Lett. 16, no. 22 (1980) 826–827.

    Google Scholar 

  11. R. Wyatt, T.G. Hodgkinson and D.W. Smith, 1.52 μm PSK heterodyne experiment featuring an external cavity diode laser local oscillator, Elect. Lett. 19, no. 14 (1983) 550–552.

    Google Scholar 

  12. K. Emura, M. Shikada, S. Fujita, I. Mito, H. Honmou and K. Minemura, Novel optical FSK heterodyne single filter detection system using a directly modulated DFB laser diode, Elect. Lett. 20, no. 24 (1984) 1022–1023.

    Google Scholar 

  13. S. Yamazaki, E. Emura, M. Shikada, M. Yamaguchi, I. Mito and K. Minemura, Long-span optical FSK heterodyne single-frequency detection transmission experiment using a phase-tunable DFB laser diode, Elect. Lett. 22, no. 1 (1986) 5–7.

    Google Scholar 

  14. K. Iwashita, T. Imai, T. Matsumoto and G. Motosugi, 400 Mbit/s optical FSK transmission experiment over 270 km of single-mode fiber, Elect. Lett. 22, no. 3 (1986) 164–165.

    Google Scholar 

  15. R.A. Linke, B.L. Kasper, N.A. Olsson and R.C. Alferness, Coherent lightwave transmission over 150 km fiber length at 400 Mbit/s and 1 Gbit/s data rats using phase modulation, Elect. Lett. 22, no. 1 (1986) 30–31.

    Google Scholar 

  16. K. Emura, S. Yamazaki, S. Fujita, M. Shikada, I. Mito and K. Minemura, Over 300 km transmission experiment on a optical FSK heterodyne dual filter detection system, Elect. Lett. 22, no. 21 (1986) 1096–1097.

    Google Scholar 

  17. D.J. Malyon, Digital fiber transmission using optical homodyne detection, Elect. Lett. 20, no. 7, (1987) 281–283.

    Article  Google Scholar 

  18. K. Iwashita, H. Kano, T. Matsumoto and Y. Sasaki, FSK transmission experiment using 10.5 km polarizationmaintaining fiber, Elect. Lett. 22, no. 4 (1986) 214–215.

    Google Scholar 

  19. S. Kobayashi, Y. Yamamoto, M. Ito and T. Kimura, Direct frequency modulation in AlGaAs semiconductor lasers, IEEE J. Quantum Electron. 18, no. 4 (1982) 582–595.

    Article  ADS  Google Scholar 

  20. S. Kobayashi and T. Kimura, Optical phase modulation in an injection locked AlGaAs semiconductor lasers, IEEE J. Quantum Electron. 18, no. 10 (1982) 1662–1669.

    Article  ADS  Google Scholar 

  21. C.H. Henry, Phase noise in semiconductor lasers, IEEE/OSA J. Lightwave Tech. 4, no. 3 (1986) 298–311.

    ADS  Google Scholar 

  22. Y. Yamamoto, S. Saito and T. Mukai, AM and FM quantum noise in semiconductor laser II-Comparison of theoretical and experimental results for AlGaAs lasers, IEEE J. Quantum Electron 19, no. 1, (1983) 47–58.

    Article  ADS  Google Scholar 

  23. S. Saito, and Y. Yamamoto, Direct observation of Lorentzian lineshape of semiconductor laser and linewidth reduction with external grating feedback, Elect. Lett. 17, no. 9 (1981) 325–327.

    Google Scholar 

  24. S. Saito, O. Nilsson and Y. Yamamoto, Frequency modulation noise and linewidth reduction in a semiconductor laser by means of negative frequency feedback technique, Appl. Phys. Lett. 46, no. 1 (1985) 3–5.

    Article  ADS  Google Scholar 

  25. R. Wyatt and W.J. Devlin, 10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range, Elect. Lett. 19, no. 3 (1983) 110–112.

    Google Scholar 

  26. R.A. Linke and K.J. Pollack, Linewidth vs. length dependence for an external cavity laser, 10th Semicond. Laser Conf., I-1, Kanazawa, 1986.

  27. T. Yanagawa, S. Saito and Y. Yamamoto, Frequency stabilization of 1.5-μm InGaAsP distributed feedback laser to NH3 absorption line, Appl. Phys. Lett. NH3 45, no. 8 (1984) 826–828.

    Article  Google Scholar 

  28. H. Blauvelt, J. Parsons, D. Lewis and H. Yen, High-speed GaAs Schottky barrier photodetectors for microwave fiber-optic links, OFC'84, TuH3, 1984.

  29. S. Miura, H. Kuwatsuka, T. Mikawa and O. Wada, Low capacitance, high speed InP/GaInAs PIN photodiode with a planar, embedded structure, OEC'86, A1-1 (Tokyo), 1986.

  30. T. Mukai, Y. Yamamoto and T. Kimura, Optical direct amplification for fiber transmission, Rev. ECL, NTT, vol. 31, no. 3 (1983), 340–348.

    Google Scholar 

  31. J.C. Simon, I.L. Eavennec and J. Charil, Comparison of noise characteristics of Fabry-Perot-type and traveling-wave-type semiconductor laser amplifiers, Elect. Lett. 19, no. 8 (1983) 288–290.

    ADS  Google Scholar 

  32. T. Mukai, T. Saitoh and O. Mikami, 1.5 μm InGaAsP Fabry-Pérot cavity type laser amplifiers, Trans. IECE J. J69-C, no. 4 (1984) 421–432.

    Google Scholar 

  33. T. Saitoh and T. Mukai, 1.5 μm GaInAsP travelingwave semiconductor laser amplifier, IEEE J. Quantum Electron, submitted.

  34. S. Kobayashi and T. Kimura, Injection locking in AlGaAs semiconductor laser, IEEE J. Quantum Electron. 17, no. 5 (1981) 681–689.

    Article  ADS  Google Scholar 

  35. Y. Yamamoto, O. Nilsson and S. Saito, Quantum limit of free-running and negative feedback semiconductor lasers, 3rd. US-Japan Seminar on Quantum Electron., Nara, 1984.

  36. R.H. Stolen and E.P. Ippen, Raman gain in glass optical waveguides, Appl. Phys. Lett. 22 (1973) 276.

    Article  ADS  Google Scholar 

  37. T. Nakashima, S. Seikai and M. Nakazawa, Configuration of the optical transmission line using stimulated Raman scattering for signal light amplification, IEEE/OSA J. Lightwave Tech. 4, no. 6 (1986) 569–573.

    Article  ADS  Google Scholar 

  38. T. Mukai, Y. Yamamoto and T. Kimura, S/N and error rate performance in AlGaAs semiconductor laser preamplifier and linear repeater systems, IEEE J. Quantum Electron. 18, no. 10 (1982) 1560–1568.

    Article  ADS  Google Scholar 

  39. N.A. Olsson, ASK heterodyne receiver sensitivity measurement with two in-line 1.5 μm optical amplifiers, Elect. Lett. 21, no. 23 (1985) 1085–1087.

    Google Scholar 

  40. N. Kawakami, K. Himeno, Y. Kikuchi, O. Fukuda and K. Inada, Fabrication of long length and low-loss polarization maintaining optical fibers, OEC'86, B2-2, Tokyo 1986.

  41. For example; H. Honmou, S. Yamazaki, K. Emura, R. Ishikawa, I. Mito, M. Shikada and K. Minemura, High performance automatic polarization control system for optical FSK heterodyne transmission, OFC'86, TuK5, 1986.

  42. T. Okoshi, S. Ryu and K. Kikuchi, Polarizationdiversity receiver for heterodyne/coherent optical fiber communications, IOOC'84, 30C3-2, Tokyo, 1983.

  43. T. Sueta and M. Izutsu, Recent development of integrated optical devices, OEC'86, A2-1, Tokyo, 1986.

  44. H. Iwamura, S. Hayashi and H. Iwasaki, A compact optical isolator using Y3Fe5012 crystal for near infrared radiation, Opt. Quantum Electron. 10 (1978) 343–398.

    Article  Google Scholar 

  45. N. Takato, K. Inoue, K. Jinguji, M. Yasau, H. Toba and M. Kawachi, Guided-wave multi/demultiplexer for optical FDM transmission, ECOC'86, Barcelona, 1986, pp. 443–446.

  46. N. Imoto, N. Shimizu and M. Ikeda, A grating filter for embedded silica waveguide, IOOC'83 22A2-4, Tokyo, 1983.

  47. R.C. Alferness, C.H. Joyner, M.D. Divino, M.J.R. Martyak and L.L. Buhl, Narrowband grating resonator filter in nGaAsP/InP waveguides, Appl. Phys. Lett. 49, no. 3 (1986) 125–127.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, T. Coherent optical fiber transmission. Hyperfine Interact 37, 311–323 (1987). https://doi.org/10.1007/BF02395718

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02395718

Keywords

Navigation