Skip to main content
Log in

Electrochemical solid electrolyte gas sensors — hydrocarbon and NOx analysis in exhaust gases

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

For the in situ measurement of the free oxygen concentration and the equilibrium oxygen partial pressure oxygen sensors based on zirconia solid electrolytes are widely used in order to monitor and control technical high temperature processes. Similarly combustibles (HC, CO) and NOx can be determined in non equilibrated oxygen containing gas mixtures of exhausts by mixed potential sensors and amperometric solid electrolyte sensors. It is expected that their long-term stability is similar to that of oxygen sensors. In both cases the electrode material with the desired electrochemical and catalytic properties is the key component. Different electrode materials made of perovskites (La1-xSrxCr1-yGayO3-δ) and composites (Au/Metal oxide) were investigated in different combustibles including CO, C3H6/8, C7H8 and CH4. The response behaviour of mixed potential sensors is determined by the catalytic activity of the measuring electrode, which is closely connected with the defect structure and depends on the measuring conditions. Furthermore the electrode response can be understood by electrokinetic data. Gas symmetrical mixed potential sensors with electrodes made of Au/Nb2O5 composites show maximum sensitivity. By using Ptreference electrodes without equilibrium behaviour the sensors are applicable in lean and rich mixtures as well. In the amperometric sensor mode the consecutive determination of oxygen and NOx or combustibles at two working electrodes is possible. The catalytic activity of the oxygen pumping electrode should be low in order to avoid the decomposition of NO and HC respectively. Alternatively, the electrochemical reduction of NO can be performed at a single working electrode, made of materials with improved NO selectivity, without the previous reduction of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

7. References

  1. H.-H. Möbius, in: Sensors (W. Göpel, J. Hesse, J. N. Zemel), VCH, Weinheim, 1991, p. 1118

    Google Scholar 

  2. H.-H. Möbius, H. Sandow, R. Hartung, S. Jakobs, U. Guth, J. Buhrow, DECHEMA Monographie126, 329 (1992)

    Google Scholar 

  3. J. Zosel, F. Gerlach, K. Ahlborn, R. Müller, U. Guth, in: Proceedings of 11th International Conference Sensor 2003, (AMA Service GmbH), Nuremberg, D, 2003, p. 323

  4. M. Koebel, M. Elsener, G. Madia, MTZ Motortechnische Zeitschrift62, 166 (2001)

    Google Scholar 

  5. J. Riegel, H. Neumann, H.-M. Wiedenmann, Solid State Ionics152–153, 783 (2002)

    Google Scholar 

  6. S.I. Somov, G. Reinhardt, U. Guth, W. Göpel, Sens. ActuatorsB 35–36, 409 (1996)

    Google Scholar 

  7. S.I. Somov, U. Guth, Sens. ActuatorsB 47, 131 (1998)

    Google Scholar 

  8. G. Reinhardt, S.I. Somov, U. Schönauer, U. Guth, W. Göpel, in: Proceedings of 8th International Conference on Solid-State Sensors and Actuators, Eurosensors IX, (Digest of technical papers1), Stockholm, S, 1995, p. 799

  9. P. Schmidt-Zhang, K.-P. Sandow, F. Adolf, G. Reinhardt, U. Guth, W. Göpel, Sens. ActuatorsB 70, 25 (2000)

    Google Scholar 

  10. N. Kato, N. Ina, Y. Watanabe, T. Murase, EP patent 0769693 (1995)

  11. R. Hartung, R. Schröder, H.-H. Möbius, Z. Phys. Chem. Leipzig262, 961 (1981)

    CAS  Google Scholar 

  12. K.-P. Sandow S. Jakobs, S. Thiemann, R. Hartung, U. Guth, U. Schönauer, GDCh-Monographie3, 377 (1996)

    Google Scholar 

  13. S. Käding, S. Jakobs, U. Guth, Ionics9, 151 (2003)

    Google Scholar 

  14. R. Hartung, Z. Chem.23, 154 (1983)

    CAS  Google Scholar 

  15. A. Vogel, G. Baier, V. Schüle, Sens. ActuatorsB 15–16, 147 (1993)

    Google Scholar 

  16. G. Lu, N. Miura, N. Yamazoe, Sens. ActuatorsB 35–36, 130 (1996)

    Google Scholar 

  17. N. Miura, T. Raisen, G. Lu, N. Yamazoe, Sens. ActuatorsB 47, 84 (1998)

    Google Scholar 

  18. K.-P. Sandow, S. Jakobs, D. Westphal, S. Thiemann, R. Hartung, U. Schönauer, U. Guth, Ionics2, 435 (1996)

    Article  CAS  Google Scholar 

  19. S. Jakobs, R. Hartung, U. Lawrenz, P. Sandow, U. Schönauer, U. Guth, Ionics2, 451 (1996)

    Article  CAS  Google Scholar 

  20. F.H. Garzon, R. Mukundan, E.L. Brosha, Solid State Ionics136–137, 633 (2000)

    Google Scholar 

  21. E.L. Brosha, R. Mukundan, R.D. Brown, F. H. Garzon, Sens. ActuatorsB 87, 47 (2002)

    Google Scholar 

  22. R. Mukundan, E.L. Brosha, R.D. Brown, F. H. Garzon, J. Electrochem. Soc.47, 1583 (2000)

    Google Scholar 

  23. U. Guth, P. Sandow, F. Adolf, B. Roth, in: Proceedings II of 9th International Conference Sensor 1999, (AMA Service GmbH), Nuremberg, D, 1999, p. 131

  24. S. Thiemann, R. Hartung, H. Wulff, J. Klimke, H.-H. Möbius, U. Guth, U. Schönauer, Solid State Ionics86–88, 873 (1996)

    Google Scholar 

  25. S. Thiemann, R. Hartung, U. Guth U. Schönauer, Ionics2, 463 (1996)

    CAS  Google Scholar 

  26. D. Westphal, A. Laske, S. Jakobs, U. Guth, Ionics6, 346 (2000)

    Article  CAS  Google Scholar 

  27. T. Hibino, S. Kakimoto, M. Sano, J. Electrochem. Soc.146, 3361 (1999)

    CAS  Google Scholar 

  28. D. Westphal, S. Jakobs, U. Guth, Ionics7, 182 (2001)

    CAS  Google Scholar 

  29. J. Zosel, D. Westphal, S. Jakobs, R. Müller, U. Guth: Solid State Ionics152–153, 525 (2002)

    Google Scholar 

  30. U. Guth, R. Hartung, S. Jakobs, K.-P. Sandow, D. Westphal, Proc. Electrochem. Soc.97–24, 231 (1998)

    Google Scholar 

  31. H. Meixner, U. Lampe, Sens. ActuatorsB 33, 198 (1996)

    Google Scholar 

  32. B. A. van Hassel, B. A. Boukamp, A. J. Burggraaf, Solid State Ionics48, 139 (1991)

    Google Scholar 

  33. V. Vashook, M. Al Daroukh, H. Ullmann, Ionics7, 59 (2000)

    Google Scholar 

  34. J. Zosel, K. Ahlborn, R. Müller, D. Westphal, V. Vashook, U. Guth, Solid State Ionics169, 115 (2004)

    Article  CAS  Google Scholar 

  35. J. Zosel, K. Ahlborn, W. Fichtner, R. Müller, U. Guth, Ionics6, 359 (2000)

    Article  CAS  Google Scholar 

  36. T. Nakamura, Y. Sakamoto, K. Saji, and J. Sakata, Sens. ActuatorsB 93, 214 (2003)

    Google Scholar 

  37. J.M. Thomas, W.J. Thomas, Principles and practice of heterogeneous catalysis, Wiley-VCH, Weinheim, 1996, p. 40

    Google Scholar 

  38. W. Zhang, P. Schmidt-Zhang, U. Guth, Solid State Ionics 169, 121 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guth, U., Zosel, J. Electrochemical solid electrolyte gas sensors — hydrocarbon and NOx analysis in exhaust gases. Ionics 10, 366–377 (2004). https://doi.org/10.1007/BF02377996

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02377996

Keywords

Navigation