Skip to main content
Log in

Evaluation of suitable methods to synthesize battery active LiNiO2

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A detailed investigation has been made on the possibility of synthesizing LiNiO2 through different methods using a variety of precursors and varying heat treating conditions with a view to identify a suitable method to synthesize LiNiO2 and to understand the influence of synthesis method and the nature of the precursors towards the performance characteristics of LiNiO2. In this regard, four different methods,viz., solid-state, organic precursors, solution combustion and microwave methods were adopted involving suitable combinations of lithium and nickel precursors. All the synthesized compounds were characterized for their phase purity (PXRD), local cation environment (FTIR), particle size, surface area, and electrochemical behavior (charge-discharge). Based on the results obtained especially from PXRD and charge-discharge studies, the “all-hydroxide” precursors of Li and Ni were found to be effective in yielding battery active LiNiO2 as far as the solid-state and microwave-assisted methods are concerned. With regard to solution synthesis methods, citrate precursor and the combustion method involving hydrazine hydrate fuel were found to yield better performing LiNiO2, compared to the rest of the combinations attempted in both categories. However, among the wet chemistry based solution methods the present study recommends solution combustion method with hydrazine hydrate as fuel to synthesize electrochemically active LiNiO2 as it was found to exhibit a stable discharge capacity of 177 mAh/g at least up to 20 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Mizushuma, P.C. Jones, P.J. Wiseman and J.B. Goodenough, Solid State Ionics3–4, 171 (1981).

    Google Scholar 

  2. J.M. Tarascon, E. Wang, F.K. Shokoohi, W.R. Mckinnon and S. Colson, J. Electrochem. Soc.138, 2859 (1991).

    CAS  Google Scholar 

  3. Lithium Batteries, New Materials, Developments and Perspectives, (G. Pistoia, Ed.) Elsevier, NY, (1994).

  4. S. Yamada, M. Fujiwara and M. Kanda, J. Power Sources54, 209 (1981).

    Google Scholar 

  5. T. Ohzuku, A Ueda, M. Nagayama, J. Electrochem. Soc.140, 1862 (1993).

    CAS  Google Scholar 

  6. T. Ohzuku, H. Komori, K. Sawai, T. Hirai, Chem. Express5, 733 (1990).

    CAS  Google Scholar 

  7. J.R. Dahn, E.W. Fuller, M. Obrovac and U. von Sacken, Solid State Ionics69, 265 (1994).

    Article  CAS  Google Scholar 

  8. M. Broussley, F. Perton and J. Labat, J. Power Sources43–44, 209 (1994).

    Google Scholar 

  9. Z. Zhang and D. Fouchard, J. Power Sources7, 16 (1998).

    Google Scholar 

  10. T. Ohzuku, A. Ueda, M. Nasatoshi, Y. Iwakoshi, H. Komori, Chem. Express54, 511 (1995).

    Google Scholar 

  11. S.R. Jain, K.C. Adiga and V. Pai Verneker, Combust. Flame40, 71 (1981).

    CAS  Google Scholar 

  12. P. Kalyani, N. Kalaiselvi and N. Muniyandi, Mater. Chem. Phys.77, 662 (2002).

    Google Scholar 

  13. N. Kalaiselvi, P. Periasamy, P. Kalyani, V. Sankara sastry, N.G. Renganathan and M. Raghavan, Proc. 8th Asian Conference on Solid State Ionics (ACSSI), Malaysia, Dec. 15–19, 2000, p. 117.

  14. P. Kalyani, N. Kalaiselvi and N. Muniyandi, J. Power Sources123, 53 (2003).

    CAS  Google Scholar 

  15. Annual Book of ASTM Standards, ASTM, Philadelphia, USA, Vol. 2, No. 5 (1989) B527.

  16. J. Morales, C. Pérez-Vicente and J.L. Tirado, Mater. Res. Bull.25, 623 (1990).

    Article  CAS  Google Scholar 

  17. Joint Commission on Powder Diffraction Standards (JCPDS No: 9-063), International Center for Diffraction Data, Newton Square, PA, 19073.

  18. X. Xiao and Y. Xu, J. Mater. Sci.31, 6449 (1996).

    Article  CAS  Google Scholar 

  19. G.T.K. Fey, J.G. Chen, V. Subramanian and T. Osaka, J. Power Sources112, 384 (2002).

    CAS  Google Scholar 

  20. P. Barboux, J. M. Tarascon, F.K. Shokoohi, J. Solid State Chem.94, 185 (1991).

    Article  CAS  Google Scholar 

  21. W. Li and J.C. Curie, J. Electrochem. Soc.144, 2273 (1997).

    Google Scholar 

  22. J. Himmrich, H. D. Lutz, Solid State Commun.79, 447 (1991).

    Article  CAS  Google Scholar 

  23. P. Tarte, A. Rulmont, M. Leigeois-Duyclaerts, R. Cahay and J. M. Winand, Solid State Ionics42, 177 (1990).

    Article  CAS  Google Scholar 

  24. A. Rougier G.A. Nazri and C. Julien, Ionics3, 170 (1997).

    Article  CAS  Google Scholar 

  25. J. Preudhomme and P. Tarte, Spectrochim. Acta26A, 747 (1970).

    Google Scholar 

  26. E. Zhecheva and R. Stoyanova, Solid State Ionics66, 143 (1993).

    Article  CAS  Google Scholar 

  27. C. Julien, M.A. Camacho-Lopez, T. Mohan, S. Chitra, P. Kalyani and S. Gopukumar, Solid State Ionics135, 241 (2000).

    CAS  Google Scholar 

  28. C.C. Chang and P.N. Kumta, J. Power Sources57, 44 (1998).

    Google Scholar 

  29. T. Ohzuku, M. Kitagawa and T. Hirai, J. Electrochem. Soc.137, 769 (1990).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kalyani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalyani, P., Kalaiselvi, N., Renganathan, N.G. et al. Evaluation of suitable methods to synthesize battery active LiNiO2 . Ionics 9, 417–427 (2003). https://doi.org/10.1007/BF02376595

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02376595

Keywords

Navigation