Skip to main content
Log in

Numerical model to predict the longterm mechanical stability of cementless orthopaedic implants

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The objective of this research was to develop a purely biomechanical model, intended to predict the long-term secondary stability of the implant starting from the biomechanical stability immediately after the operation. A continuous rulebased adaptation scheme was formulated as a dynamic system, and the work verified if such a model produced unique and clinically meaningful solutions. It also investigated whether this continuous model provided results comparable with those of a simpler, discrete-states model used in a previous study. The proposed model showed stable convergence behaviour with all investigated initial conditions, with oscillatory behaviour limited to the first steps of the simulation. The results obtained with the wide range of initial conditions support the hypothesis of the existence and uniqueness of the solution for all initial conditions. The differences between the continuous model and the simpler and more efficient finite-states model were found to be extremely modest (less than 4% over the predicted bonded area). Because of these minimal differences, the use of the much faster finite-states model is recommended to investigate asymptotic conditions, and the continuous model described should be used to investigate the evolution over time of the adaptive process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Saffar, N. (1999): ‘The osteogenic properties of the interface membrane at the site of orthopedic implants: the impact of underlying joint disease’,J. Long-Term Effects Med. Implants,9, pp. 23–45

    Google Scholar 

  • Bernakiewicz, M., andViceconti, M. (2002): ‘The role of parameter identification in finite element contact analyses with reference to orthopaedic biomechanics applications’,J. Biomech.,35, pp. 61–67

    Article  Google Scholar 

  • Dalton, J. E., Cook, S. D., Thomas, K. A., andKay, J. F. (1995): ‘The effect of operative fit and hydroxyapatite coating on the mechanical and biological response to porous implants’,J. Bone Joint Surg. (Am). 77, pp. 97–110

    Google Scholar 

  • Engh, C., O'Connor, D., Jasty, M., McGovern, T., Bobyn, J., andHarris, W. (1992): ‘Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses’,Clin. Orthopaed. Related Res., pp. 13–29

  • Fessy, M. H., Seutin, B., andBejui, J. (1997): ‘Anatomical basis for the choice of the femoral implant in the total hip arthroplasty’,Surg. Radiol. Anatomy,19, pp. 283–286

    Google Scholar 

  • Hofmann, S., Hopf, R., Mayr, G., Schlag, G., andSalzer, M. (1999): ‘In vivo femoral intramedullary pressure during uncemented hip arthroplasty’,Clin. Orthop. Related Res., pp. 136–146.

  • Jasty, M., Maloney, W. J., Bragdon, C. R., O'Connor, D. O., Haire, T., andHarris, W. H. (1991): ‘The initiation of, failure in cemented femoral components of hip arthroplasties’,J. Bone Joint Surg. (Br.),73, pp. 551–558.

    Google Scholar 

  • Jasty, M., Bragdon, C. R., Zalenski, E., O'Connor, D., Page, A., andHarris, W. H. (1997): ‘Enhanced stability of uncemented canine femoral components by bone ingrowth into the porous coatings’,J. Arthroplasty,12, pp. 106–113

    Article  Google Scholar 

  • Kienapfel, H., Sprey, C., Wilke, A., andGriss, P. (1999): ‘Implant fixation by bone ingrowth’,J. Arthroplasty,14, pp. 355–368

    Article  Google Scholar 

  • LaPorte, D. M., Mont, M. A., andHungerford, D. S. (1999): ‘Proximally porous-coated ingrowth prostheses: limits of use’,Orthopedics,22, pp. 1154–1160, quiz pp. 1161–1162

    Google Scholar 

  • Lintner, F., Zweymuller, K., andBrand, G. (1986): ‘Tissue reactions to titanium endoprostheses. Autopsy studies in four cases’,J. Arthroplasty,1, pp. 183–195

    Google Scholar 

  • Maloney, W. J., Jasty, M., Burke, D. W., O'Connor, D. O., Zalenski, E. B., Bragdon, C., andHarris, W. H. (1989): ‘Biomechanical and histologic investigation of cemented total hip arthroplasties. A study of autopsy-retrieved femurs afterin vivo cycling’,Clin. Orthopaed. Related Res., pp. 129–140

  • Manley, P. A., Vanderby, R., Kohles, S., Markel, M. D., andHeiner, J. P. (1995): ‘Alterations in femoral strain, micromotion, cortical geometry, cortical porosity, and bony ingrowth in uncemented collared and collarless prostheses in the dog’,J. Arthroplasty,10, pp. 63–73

    Article  Google Scholar 

  • Monti, L., Cristofolini, L., andViceconti, M. (1999): ‘Methods for quantitative analysis of the primary stability in uncemented hip prostheses’,Artific. Organs,23, pp. 851–859

    Google Scholar 

  • Nabae, M., Inoue, K., Ushiyama, T., andHukuda, S. (1999): ‘Gene expressions of antiinflammatory mediators in THR retrieved interfacial membranes’,Acta Orthopaed. Scand.,70, pp. 149–154

    Google Scholar 

  • Ozeki, K., Yuhta, T., Aoki, H., Nishimura, I., andFukui, Y. (2001): ‘Push-out strength of hydroxyapatite coated by sputtering technique in bone’,Biomed. Materi. Eng.,11, pp. 63–68

    Google Scholar 

  • Pilliar, R., Lee, J., andManiatopoulos, C. (1986): ‘Observations on the effect of movement on bone ingrowth into porous-surfaced implants’,Clin. Orthopaed. Related Res., pp. 108–113

  • Rancourt, D., Shirazi-Adl, A., Drouin, G., andPaiement, G. (1990): ‘Friction properties of the interface between porous-surfaced metals and tibial cancellous bone’,J. Biomed. Mater. Res.,24, pp. 1503–1519

    Article  Google Scholar 

  • Skripitz, R., andAspenberg, P. (1998): ‘Tensile bond between bone and titanium: a reappraisal of osseointegration’,Acta Orthopaed. Scand.,69, pp. 315–319

    Google Scholar 

  • Soballe, K., Hansen, E. S., Brockstedt-Rasmussen, H., Pedersen, C. M., andBunger, C. (1990): ‘Hydroxyapatite coating enhances fixation of porous coated implants. A comparison in dogs between press fit and noninterference fit’,Acta Orthopaed. Scand.,61, pp. 299–306

    Google Scholar 

  • Soballe, K., Hansen, E. S., Brockstedt-Rasmussen, H., Hjortdal, V. E., Juhl, G. I., Pedersen, C. M., Hvid, I., andBunger, C. (1991): ‘Gap healing enhanced by hydroxyapatite coating in dogs’,Clin. Orthopaed. Related Res., pp. 300–307

  • Soballe, K., Brockstedt-Rasmussen, H., Hansen, E. S., andBunger, C. (1992a): ‘Hydroxyapatite coating modifies implant membrane formation. Controlled micromotion studied in dogs’,Acta Orthopaed. Scand.,63, pp. 128–140

    Google Scholar 

  • Soballe, K., Hansen, E. S., Rasmussen, H., Jorgensen, P. H., andBunger, C. (1992b): ‘Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions’,J Orthopaed. Res.,10, pp. 285–299

    Google Scholar 

  • Soballe, K., Hansen, E. S., Brockstedt_Rasmussen, H., andBunger, C. (1993): ‘Hydroxyapatite coating converts fibrous tissue to bone around loaded implants’,J. Bone Joint Surg. (Br),75, pp. 270–278

    Google Scholar 

  • Song, Y., Beaupre, G., andGoodman, S. B. (1999): ‘Osseointegration of total hip arthroplasties: studies in humans and animals’,J. Long-Term Effects Med. Implants,9, pp. 77–112

    Google Scholar 

  • Spears, I. R., Pfleiderer, M., Schneider, E., Hille, E., Bergmann, G., andMorlock, M. M. (2000): ‘Interfacial conditions between a press-fit acetabular cup and bone during daily activities: implications for achieving bone in-growth’,J. Biomech.,33, pp. 1471–1477

    Article  Google Scholar 

  • Takei, I., Takagi, M., Santavirta, S., Ida, H., Ishii, M., Ogino, T., Ainola, M., andKonttinen, Y. T. (2000): ‘Messenger ribonucleic acid expression of 16 matrix metalloproteinases in bone-implant interface tissues of loose artificial hip joints’,J. Biomed. Mater. Res.,52, pp. 613–620

    Google Scholar 

  • Toni, A., Fabbri, F., Scimeca, G. B., Zanotti Russo, M. C., Baruffaldi, F., Cianci, R., andGiunti, A. (1995): ‘Computerized morphometric analysis of the femoral diaphyseal canal’,La Chirurgia degli Organi di Movimento,80, pp. 207–219

    Google Scholar 

  • Viceconti, M., Muccini, R., Bernakiewicz, M., Baleani, M., andCristofolini, L. (2000): ‘Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration’,J. Biomech.,33, pp. 1611–1618

    Article  Google Scholar 

  • Viceconti, M., Monti, L., Muccini, R., Bernakiewicz, M., andToni, A. (2001): ‘Even a thin, layer of soft tissue may compromise the primary stability of cementless hip stems’,Clin. Biomech.,16, pp. 765–775

    Article  Google Scholar 

  • Viceconti, M., Pancanti, A., Dotti, M., Traina, F., andCristofolini, L. (2004): ‘Effect of the initial implant fitting on the predicted secondary stability of a cementless stem’,Med. Biol. Eng. Comput.,42, 2, pp. 222–229

    Article  Google Scholar 

  • Wagner, H., andWagner, M. (2000): ‘Cone prosthesis for the hip joint’,Arch. Orthopaed. Traum. Surg.,120, pp. 88–95

    Google Scholar 

  • Wroblewski, B., andSiney, P. (1993): ‘Charnley low-friction arthroplasty of the hip. Long-term results’,Clin. Orthopaed. Related Res., pp. 191–201

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Viceconti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viceconti, M., Ricci, S., Pancanti, A. et al. Numerical model to predict the longterm mechanical stability of cementless orthopaedic implants. Med. Biol. Eng. Comput. 42, 747–753 (2004). https://doi.org/10.1007/BF02345207

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345207

Keywords

Navigation