Skip to main content
Log in

Stimulation of a Ouabain-Sensitive Rb+ uptake in human erthrocytes with an external electric field

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

(Na, K)ATPase of the red blood cell (RBC) is known to be electrogenic. Activation of this pump hyperpolarizes the RBC membrane by several millivolts. By exposing erythrocytes in an isotonic suspension to an alternating electric field it is possible to modulate transmembrane potential (δΩ) of the RBC. We have found that this modulation stimulates uptake of Rb+, against a chemical concentration gradient, when the applied AC field exceeds 10 V/cm (or an induced δΩ of 6 mV). The voltage-stimulated Rb+ uptake is completely inhibited by ouabain. Thus, (Na, K)ATPase may be involved. The stimulated Rb+ uptake is unrelated to the thermal effect by several lines of evidence. First, this uptake is above levels in controlled samples maintained at an identical temperature. Second, this uptake shows an optimum voltage. The maximum stimulation obtained in our experiment (26 amol/RBC·hr) occurs at 20 V/cm, i.e., a δΩ of 12 mV. Above or below this field strength the uptake is reduced. Third, this uptake is AC frequency depedent. It peaks around 1 kHz and diminishes at 1 MHz. The effective range is between 0.1 kHz to 0.1 MHz. A thermal effect would not be frequency dependent. In contrast to the ATP-dependent pumping activity of the (Na, K)ATPase, no stimulated Na+ efflux is detectable with the AC field. Neither Rb+ efflux, nor Na+ influx is stimulated by the AC field. Rb+ uptake is also stimulated by the AC field in a RBC sample treated with vanadate. The meaning of these observations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Betz, W.J., Caldwell, H.J., Ribchester, R.R., Robinson, K.R., Stump, R.F. 1980. Endogenous electric field around muscle fibres depends on the Na+−K+ pump.Nature (London) 287:235–237

    Article  CAS  Google Scholar 

  • Dunham, P.B., Hoffman, J.F. 1980. Na and K transport in red blood cells.In: Membrane Physiology. T.E. Andreoli, J.F. Hoffman, and D.D. Fanestil, editors. pp. 255–272. Plenum, New York-London

    Google Scholar 

  • Ellory, J.C., Keynes, R.D. 1969. Binding of tritiated digoxin to human red cell ghosts.Nature (London) 221:776

    CAS  Google Scholar 

  • Garrahan, P.J., Glynn, I.M. 1967. The stoichiometry of the sodium pump.J. Physiol (London) 192:217–235

    CAS  Google Scholar 

  • Hoffman, J.F. 1969. The interaction between tritiated ouabain and the Na−K pump in red blood cells.J. Gen. Physiol. 54:343s-350s

    CAS  Google Scholar 

  • Hoffman, J.F., Kaplan, J.H., Callahan, T.J. 1979. The Na:K pump in red cells is electrogenic.Fed. Proc. 38:2440–2441

    CAS  PubMed  Google Scholar 

  • Hoffman, J.F., Laris, P.C. 1974. Determination of membrane potentials in human andAmphiuna red blood cells by means of a fluorescent probe.J. Physiol. (London) 239:519–552

    CAS  Google Scholar 

  • Kinosita, K., Tsong, T.Y. 1977a. Hemolysis of human erythrocytes by a transient electric field.Proc. Natl. Acad. Sci. USA 74:1923–1927

    CAS  PubMed  Google Scholar 

  • Kinosita, K., Tsong, T.Y. 1977b. Formation and resealing of pores of controlled sizes in human erythrocyte membranes.Nature (London) 268:438–441

    Article  Google Scholar 

  • Kinosita, K., Tsong, T.Y. 1979. Voltage-induced conductance in human erythrocyte membranes.Biochim. Biophys. Acta 554:479–497

    CAS  PubMed  Google Scholar 

  • Lassen, U.V. 1977. Electrical potential and conductance of the red cell membrane.In: Membrane Transport in Red Cells. J.C. Ellory and V.L. Lew, editors. pp. 137–172. Academic Press, London

    Google Scholar 

  • Lew, V.L., Beauge, L. 1979. Passive cation fluxes in red cell membranes.In: Membrane Transport in Biology. G. Giebisch, D.C. Tosteson, and H.H. Ussing, editors. pp. 81–115. Springer-Verlag, Berlin-Heidelberg

    Google Scholar 

  • Neumann, E., Rosenheck, K. 1973. Potential difference across vesicular membranes.J. Membrane Biol. 14:194–196

    Google Scholar 

  • Post, R.L., Jolly, P.C. 1957. The linkage of sodium, potassium and ammonium active transport across the human erythrocyte membrane.Biochim. Biophys. Acta 25:118–128

    Article  CAS  PubMed  Google Scholar 

  • Rapoport, S.I. 1970. The sodium-potassium exchange pump: Relation of metabolism to electrical properties of the cell.Biophys. J. 10:246–259

    CAS  PubMed  Google Scholar 

  • Rapoport, S.I. 1971. The sodium-potassium exchange pump. II. Analysis of Na+-loaded frog sartorious muscle.Biophys. J. 11:631–647

    CAS  PubMed  Google Scholar 

  • Riemann, F., Zimmermann, U., Pilvat, G. 1975. Release and uptake of haemoglobin and ions in red blood cells induced by dielectric breakdown.Biochim. Biophys. Acta 394:449–462

    CAS  PubMed  Google Scholar 

  • Sale, A.J.H., Hamilton, W.A. 1968. Effects of high electric fields on micro-organisms. III. Lysis of erythrocytes and protoplasts.Biochim. Biophys. Acta 163:37–43

    CAS  PubMed  Google Scholar 

  • Sarkadi, B., Tosteson, D.C. 1979. Active cation transport in human red cells.In: Membrane Transport in Biology. G. Giebish, D.C. Tosteson & H.H. Ussing, editors. pp. 117–160. Springer-Verlag, Berlin-Heidelberg

    Google Scholar 

  • Schatzmann, H.J. 1953. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran.Helv. Physiol. Pharmacol. Acta 11:346–354

    CAS  PubMed  Google Scholar 

  • Schlodder, E., Witt, H.T. 1981. Relation between the initial kinetics of ATP synthesis and of conformational changes in the chloroplast ATPase studied by external field pulses.Biochim. Biophys. Acta 635:571–584

    CAS  PubMed  Google Scholar 

  • Sims, P.J., Waggoner, A.S., Wang, C.H., Hoffman, J.F. 1974. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles.Biochemistry 13:3315–3330

    Article  CAS  PubMed  Google Scholar 

  • Teissie, J., Knox, B.E., Tsong, T.Y., Wehrle, J. 1981. Synthesis of adenosine triphosphate in respiration-inhibited submitochondrial particles induced by microsecond electric pulses.Proc. Natl. Acad. Sci USA 78:7473–7477

    CAS  PubMed  Google Scholar 

  • Teissie, J., Tsong, T.Y. 1980. Evidence of voltage-induced channel opening in Na/K ATPase of human erythrocyte membrane.J. Membrane Biol. 55:133–140

    Article  CAS  Google Scholar 

  • Teissie, J., Tsong, T.Y. 1981. Electric field induced transient pores in phospholipid bilayer vesicles.Biochemistry 20:1548–1554

    CAS  PubMed  Google Scholar 

  • Teissie, J., Tsong, T.Y. 1981. Voltage modulation of Na+/K+ transport in human erythrocytes.J. Physiol. (Paris) 77:1043–1053

    CAS  Google Scholar 

  • Thomas, R.C. 1972. Electrogenic sodium pump in nerve and muscle cells.Physiol. Rev. 52:563–594

    CAS  PubMed  Google Scholar 

  • Tosteson, D.C. 1981. Cation countertransport and cotransport in human red cells.Fed. Proc. 40:1429–1433

    CAS  PubMed  Google Scholar 

  • Tsong, T.Y. 1982. Viscosity-dependent conformational relaxation of ribonuclease A in the thermal unfolding zone.Biochemistry 21:1493–1498

    Article  CAS  Google Scholar 

  • Witt, H.T., 1979. Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of the electric pulse methods.Biochim. Biophys. Acta 505:355–427

    CAS  PubMed  Google Scholar 

  • Zimmermann, U., Pilvat, G., Riemann, F. 1974. Dielectric breakdown of cell membranes.Biophys. J. 14:881–899

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serpersu, E.H., Tsong, T.Y. Stimulation of a Ouabain-Sensitive Rb+ uptake in human erthrocytes with an external electric field. J. Membrain Biol. 74, 191–201 (1983). https://doi.org/10.1007/BF02332123

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02332123

Key Words

Navigation