Skip to main content
Log in

Cell Electrofusion in Centrifuged Erythrocyte Pellets Assessed by Dielectric Spectroscopy

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We have characterized cell electrofusion in cell pellets by dielectric spectroscopy. Cell pellets were formed from horse erythrocyte suspensions by centrifugation and were subjected to intense AC pulses. The dielectric spectra of the pellets were measured over a frequency range of 10 Hz to 10 MHz. The application of AC pulses caused low-frequency (LF) dielectric relaxation below about 100 kHz. The LF dielectric relaxation was markedly affected not only by pretreatment of cells at 50 °C, which disrupts the spectrin network of erythrocytes, but also by the parameters of the AC pulses (frequency of the sine wave and repeat count of the pulses). The occurrence of the LF dielectric relaxation was qualitatively accounted for by modeling fusion products in the pellet by prolate spheroidal cells whose long axes run parallel to the applied electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abidor IG, Barbul AI, Zhelev DV, Doinov P, Bandrina IN, Osipova EM, Sukharev SI (1993) Electrical properties of cell pellets and cell electrofusion in a centrifuge. Biochim Biophys Acta 1152:207–218

    Article  CAS  PubMed  Google Scholar 

  • Abidor IG, Li LH, Hui SW (1994) Studies of cell pellets: II. Osmotic properties, electroporation and related phenomena: membrane interactions. Biophys J 67:427–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asami K (2002) Characterization of heterogeneous systems by dielectric spectroscopy. Prog Polym Sci 27:1617–1659

    Article  CAS  Google Scholar 

  • Asami K (2007) Dielectric properties of biological tissues in which cells are connected by communicating junctions. J Phys D 40:3718–3727

    Article  CAS  Google Scholar 

  • Asami K (2012) Dielectric spectroscopy reveals nanoholes in erythrocyte ghosts. Soft Matter 8:3250–3257

    Article  CAS  Google Scholar 

  • Asami K, Sekine K (2007a) Dielectric modeling of cell division for budding and fission yeast. J Phys D 40:1128–1133

    Article  CAS  Google Scholar 

  • Asami K, Sekine K (2007b) Dielectric modeling of erythrocyte aggregation in blood. J Phys D 40:2197–2204

    Article  CAS  Google Scholar 

  • Asami K, Yonezawa T (1995) Dielectric behavior of non-spherical cells in culture. Biochim Biophys Acta 1245:317–324

    Article  CAS  PubMed  Google Scholar 

  • Asami K, Hanai T, Koizumi N (1980) Dielectric approach to suspensions of ellipsoidal particles covered with a shell in particular reference to biological cells. Jpn J Appl Phys 19:359–365

    Article  Google Scholar 

  • Asami K, Gheorghiu E, Yonezawa T (1998) Dielectric behavior of budding yeast in cell separation. Biochim Biophys Acta 1381:234–240

    Article  CAS  PubMed  Google Scholar 

  • Asami K, Gheorghiu E, Yonezawa T (1999) Real-time monitoring of yeast cell division by dielectric spectroscopy. Biophys J 76:3345–3348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle MH (1985) The electrical properties of heterogeneous mixture containing an oriented spheroidal dispersed phase. Colloid Polym Sci 263:51–57

    Article  CAS  Google Scholar 

  • Chemomordik LV, Sowers AE (1991) Evidence that the spectrin network and a nonosmotic force control the fusion product morphology in electrofused erythrocyte ghosts. Biophys J 60:1026–1037

    Article  Google Scholar 

  • Daoud J, Asami K, Rosenberg L, Tabrizian M (2012) Dielectric spectroscopy for non-invasive monitoring of epithelial cell differentiation within three-dimensional scaffolds. Phys Med Biol 57:5097–5112

    Article  PubMed  Google Scholar 

  • Finaz C, Lefevre A, Teissie J (1984) Electrofusion. A new, highly efficient technique for generating somatic cell hybrids. Exp Cell Res 150:477–482

    Article  CAS  PubMed  Google Scholar 

  • Glaser RW, Donath E (1987) Hindrance of red cell electrofusion by the cytoskeleton. Stud Biophys 121:37–43

    CAS  Google Scholar 

  • Hanai T, Asami K, Koizumi N (1979) Dielectric theory of concentrated suspension of shell-spheres in particular reference to the analysis of biological cell suspensions. Bull Inst Chem Res Kyoto Univ 57:297–305

    CAS  Google Scholar 

  • Hayashi Y, Katsumoto Y, Omori S, Yasuda A, Asami K, Kaibara M, Uchimura I (2010) Dielectric coagulometry: a new approach to estimate venous thrombosis risk. Anal Chem 80:9769–9774

    Article  Google Scholar 

  • Irimajiri A, Ando M, Matsuoka R, Ichinowatari T, Takeuchi S (1996) Dielectric monitoring of rouleaux formation in human whole blood: a feasibility study. Biochim Biophys Acta 1290:207–209

    Article  CAS  PubMed  Google Scholar 

  • Jaroszeski MJ, Gilbert R, Fallon PG, Helier R (1994) Mechanically facilitated cell-cell electrofusion. Biophys J 67:1574–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaroszynski W, Keslinka E, Wujtewicz M, Suchorzewska J, Kwiatkowski B (2002) Effects of hydroxyethyl starch (HAES) on degree and kinetics of erythrocyte aggregation studied with dielectric spectroscopy method. Med Sci Monit 8:272–278

    Google Scholar 

  • Li LH, Hensen ML, Zhao YL, Hui SW (1996) Electrofusion between heterogeneous-sized mammalian cells in a pellet: potential application in drug delivery and hybridoma formation. Biophys J 71:479–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mekid H, Mir LM (2000) In vivo cell electrofusion. Biochim Biophys Acta 1524:118–130

    Article  CAS  PubMed  Google Scholar 

  • Pauly H, Schwan HP (1959) Über die Impedanz einer Suspension von kugelformigen Teilchen mit einer Schale. Z Naturforsch B 14:125–131

    Article  Google Scholar 

  • Salomskaite-Davalgiene S, Cepurniene K, Satkkauskas S, Venslauskas MS, Mir LM (2009) Extent of cell electrofusion in vitro and in vivo is cell line dependent. Anticancer Res 29:3125–3130

    PubMed  Google Scholar 

  • Sekine K, Watanabe Y, Hara S, Asami K (2005) Boundary-element calculations for dielectric behavior of doublet-shaped cells. Biochim Biophys Acta 1721:130–138

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Suzuki K, Niimura T, Kano T, Takashima S (1991) A production of monoclonal antibodies by a simple electrofusion technique induced by ac pulses. Biotechnol Bioeng 37:790–794

    Article  CAS  PubMed  Google Scholar 

  • Terpitz U, Letschert S, Bonda U, Spahn C, Guan C, Sauer M, Zimmermann U, Bamberg E, Zimmermann D, Sukhorukov VL (2012) Dielectric analysis and multi-cell electrofusion of the yeast Pichia pastoris for electrophysiological studies. J Membr Biol 245:815–826

    Article  CAS  PubMed  Google Scholar 

  • Usaj M, Trontelj K, Miklavcic D, Kanduser M (2010) Cell-cell electrofusion: optimization of electric field amplitude and hypotonic treatment for mouse melanoma (B16-F1) and Chinese Hamster Ovary (CHO) cells. J Membr Biol 236:107–116

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Suzaki T, Irimajiri A (1991) Dielectric behavior of the frog lens in the 100 Hz to 500 MHz range. Simulation with an allocated ellipsoidal-shells model. Biophys J 59:139–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann U (1982) Electric field-induced cell-to-cell fusion. J Membr Biol 64:165–182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Asami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asami, K. Cell Electrofusion in Centrifuged Erythrocyte Pellets Assessed by Dielectric Spectroscopy. J Membrane Biol 249, 31–39 (2016). https://doi.org/10.1007/s00232-015-9843-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9843-4

Keywords

Navigation