Advertisement

Chromatographia

, Volume 37, Issue 5–6, pp 313–318 | Cite as

Retention of some glucosinolates in anion exchange chromatography. Part I: Qualitative study on a silica-trialkylammonium exchanger

  • C. Elfakir
  • M. Lafosse
  • M. Dreux
Originals

Summary

The retention and separation of glucosinolates, as organic anions, were studied on a silica-based strong anion exchanger under isocratic elution conditions. All glucosinolates carry the same functional ionic group (-OSO 3 ), however they do not have the same retention in anion exchange chromatography. The plots of capacity factors of organic anions versus the reciprocal of eluent ion concentration show good linearity. From the slope and y-intercept data the major retention mechanisms are interpreted as ion exchange and reversed-phase interactions. The effects of nature and concentration of the eluent ion and the influence of organic modifier addition to the aqueous buffered mobile phase are also investigated. Direct and indirect UV detection were used.

Our results open the way for the development of new systems for intact glucosinolate analysis which are easier to use than the present ion-pairing chromatographic method.

Key Words

Ion chromatography Anion exchange Glucosinolate analysis Organic anion chromatography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. R. Fenwick, R. K. Heaney, W. J. Mullin, CRC Crit. Rev. Food Sci. Nutr.18, 123 (1983).Google Scholar
  2. [2]
    H. Sorensen, in “Rapeseed/Canola: Production, Chemistry, Nutrition and Processing Technology”. F. Shahidi, Ed., Van Nostrand Reinhold, New York, 1990, Chapter 9, pp. 149.Google Scholar
  3. [3]
    L. M. Larsen, H. Sorensen, in “Advances in the Production and Utilization of Cruciferous Crops”. H. Sorensen, Ed., M. Nijhoff, Dordrecht 1985, pp. 1.Google Scholar
  4. [4]
    B. O. Eggum, O. Olsen, H. Sorensen, in “Advances in the Production and Utilization of Cruciferous Crops”. H. Sorensen, Ed., M. Nijhoff, Dordrecht, 1985, pp. 50.Google Scholar
  5. [5]
    “Oilseeds. Determination of glucosinolates by HPLC”. Off. J. Europ. Comm.,L 170, 27 (1990))Google Scholar
  6. [6]
    A. Quinsac, D. Ribaillier, E. Elfakir, M. Lafosse, M. Dreux, J. Assoc. Off. Anal. Chem.74, 932 (1991).Google Scholar
  7. [7]
    C. Elfakir, M. Lafosse, M. C. Viaud, M. Dreux, HRC15, 392 (1992).Google Scholar
  8. [8]
    P. Helboe, O. Olsen, H. Sorensen, J. Chromatogr.197, 199 (1980).Google Scholar
  9. [9]
    B. Bjerg, H. Sorensen, in “World Crops: Production, Utilization, Description. Glucosinolates in Rapeseeds: Analytical Aspects”, J. P. Wathelet, Ed., M. Nijhoff, Dordrecht, 1987, pp. 125.Google Scholar
  10. [10]
    B. Björkqvist, A. Hase, J. Chromatogr.435, 501 (1988).Google Scholar
  11. [11]
    C. Elfakir, M. Lafosse, M. Dreux, A. Quinsac, Communication to “Journées sur les Chromatographies en Phase Liquide et Supercritique”, Société Française de Chimie, Paris, 1991, (Janv.)Google Scholar
  12. [12]
    O. Olsen, H. Sorensen, J. Am. Oil Chem. Soc.58, 857 (1981).Google Scholar
  13. [13]
    R. Rosset, M. Caude, A. Jardy, in “Chromatographies en phase liquide et supercritique”, Masson, Paris, 1991. Chapter XGoogle Scholar
  14. [14]
    A. Rahman, N. E. Hoffman, J. Chromatogr. Sci.,28, 157 (1990).Google Scholar
  15. [15]
    H. K. Lee, N. E. Hoffman, J. Chromatogr. Sci.,30, 98 (1992).Google Scholar
  16. [16]
    D. T. Gjerde, J. S. Fritz, “Ion Chromatography”, 2nd ed., Hüthig, Heidelberg, 1987, pp. 70.Google Scholar
  17. [17]
    “High Performance Liquid Chromatography”,J. H. Knox, Ed., Edinburgh university Press, Edinburgh, 1978, pp. 53Google Scholar
  18. [18]
    R. Rosset, M. Caude, A. Jardy, in “Chromatographies en phase liquide et supercritique”, Masson, Paris, 1991, p. 85.Google Scholar
  19. [19]
    C. Elfakir, J. P. Mercier, M. Dreux, results to be publishedGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1993

Authors and Affiliations

  • C. Elfakir
    • 1
  • M. Lafosse
    • 1
  • M. Dreux
    • 1
  1. 1.Laboratoire de Chimie Bioorganique et Analytique (LCBA), CNRS URA 499Université d'OrléansOrléans Cedex 2France

Personalised recommendations