Skip to main content
Log in

Biochemistry and physiology of nitrogen fixation with particular emphasis on nitrogen-fixing phototrophs

  • Biochemistry and Physiology of Nitrogen Fixation
  • Published:
Plant and Soil Aims and scope Submit manuscript

Summary

This paper presents an overview of aspects of N2-fixation in phototrophic N2-fixers. Nitrogenase is little different in phototrophs from other organisms. Evidence suggests that fixed carbon dissimilation rather than direct photoreduction from oxidised inorganic compounds or exogenous photosynthetic electron donors is the major route of reductant supply to nitrogenase in phototrophs; inRhodospirillum rubrum pyruvate is a possible electron donor to nitrogenase; in cyanobacteria the oxidative pentose phosphate pathway is important, although some recent evidence implicates glycolysis and the tricarboxylic acid cycle in reductant supply in heterocystous cyanobacteria. In photosynthetic organisms light modulation of various enzymes occurs-some Calvin cycle enzymes are light activated, some oxidative pentose phosphate pathway and glycolytic enzymes are deactivated and some tricarboxylic acid cycle enzymes are activated. Reduced levels of thioredoxin in heterocysts may contribute to the sustained functioning of the oxidative pentose phosphate pathway in heterocysts in the light and dark. In photosynthetic bacteria such asRhodospirillum rubrum an activating enzyme which removes a modifying group from inactive Fe protein can activate nitrogenase. O2 and NH +4 both inhibit N2-fixation and there is some evidence in cyanobacteria that O2 stability of whole cell nitrogenase can be achieved by prolonged incubation of cultures at high O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson L E and Avron M 1976 Light modulation of enzyme activity in chloroplasts. Pl. Physiol. 57, 209–213

    Google Scholar 

  2. Anderson L E and Duggan J X 1976 Light modulation of Calvin cycle enzyme activity in photosynthetic prokaryotes and eukaryotes. Proc Second Int. Symp. on Photosyn thetic Prokaryotes Eds G A Codd and W D P Stewart. pp 179–181. University of Dundee Dundee

    Google Scholar 

  3. Anderson L E Mohamed A H Ashton A R Scheibe R and Duraini C 1983 Light modulations in chloroplasts. the light effect mediator (LEM) system.In Thiroredoxins Structure and Function. Ed P Gadal. pp 269–276 CNRS Paris.

    Google Scholar 

  4. Apte S K Rowell P and Stewart W D P 1978 Electron donation to ferredoxin in heterocysts of the N2 fixing algaAnabaena cylindrica Proc R Soc Lon B 200. 1–25.

    Google Scholar 

  5. Barnes E M Zimniak P and Jayakumar A 1983 Role of glutamine synthetase in the uptake and metabolism of methylammonium byAzotobacter vinelandii. J. Bacteriol. 156, 752–757.

    Google Scholar 

  6. Bjorkman O and Badger M 1977 Annual Report of the Director. Dept. Plant Biol. Carnegie Inst. 1976–1977. pp. 354–366.

    Google Scholar 

  7. Bothe H 1982 Nitrogen fixation.In The Biology of Cyanobacteia. Eds N G Carr and B A Whitton. pp 87–104. Blackwell Scientific Publ. Oxford.

    Google Scholar 

  8. Bothe H and Eisbrenner G 1981 The hydrogenase-nitrogenase relationship in nitrogenfixing organisms.In Biology of Inorganic Nitrogen and Sulfur. Eds H Bothe and A Trebst. pp 141–150. Springer, Berlin, Heidelberg New York.

    Google Scholar 

  9. Bothe H, Falkenberg B and Nolteernsting U 1974 Properties and function of the pyruvate: ferredoxin oxidoreductase from the blue-green algaAnabaena cylindrica. Arch. Mikrobiol. 96, 291–304.

    Google Scholar 

  10. Bothe H, Nelles H, Hager K-P, Papen H and Neuer G 1984 Physiology and biochemistry of N2-fixation by cyanobacteria.In Advances in Nitrogen Fixation Research. Eds C Veeger and W E Newton. pp 199–210. Nijhoff/Junk, Pudoc.

  11. Bothe H, Neuer G, Kalbe I and Eisbrenner G 1980 Electron donors and hydrogenase in nitrogen fixing microorganisms.In Nitrogen Fixation. Eds. W D P Stewart and J R Gallon. pp 83–112. Academic Press, London.

    Google Scholar 

  12. Boussiba S, Resch M and Gibson J 1984 Ammonia uptake and retention in some cyanobacteria. Arch. Microbiol. 138, 287–292.

    Google Scholar 

  13. Boussiba S, Dilling W and Gibson J 1984 Methylammonium transport inAnacystis nidulans R-2. J. Bacteriol. 160, 204–210.

    Google Scholar 

  14. Brooks S J, Imperial T and Brill W J 1985 Biochemical genetics of nitrogen fixation inKlebsiella.In Nitrogen Fixation and CO2 Metabolsim. Eds. P W Ludden and J E Burris. pp 65–74. Elsevier, New York.

    Google Scholar 

  15. Buchanan B B 1980 Role of light in the regulation of chloroplast enzymes. Annu. Rev. Plant Physiol. 31, 341–374.

    Google Scholar 

  16. Burgess B K 1984 Structure and reactivity of nitrogenase — an overview.In Advances in Nitrogen Fixation Research. Eds C Veeger and W E Newton. pp 103–114. Nijhoff/Junk, Pudoc.

  17. Burris R H 1985 Forty years on the trail of nitrogenase.In Nitrogen Fixation and CO2 Metabolism. Eds P W Ludden and J E Burris. pp 101–110. Elsevier, New York.

    Google Scholar 

  18. Burris R H, Arp D J, Benson D R, Emerich D W, Hageman R V, Ljones T, Ludden P W and Sweet W J 1980 The biochemistry of nitrogenase.In Nitrogen Fixation. Eds. W D P Stewart and J R Gallon. pp 37–54. Academic Press, London.

    Google Scholar 

  19. Carithers R P, Yoch D C and Arnon D I 1979 Two forms of nitrogenase from the photosynthetic bacteriumRhodospirillum rubrum. J. Bacteriol. 137, 779–789.

    Google Scholar 

  20. Carpenter E J and Price C C 1976 MarineOscillatoria (Trichodesmium): explanation for aerobic nitrogen fixation without heterocysts. Science 191, 1278–1280.

    Google Scholar 

  21. Codd G A and Stewart W D P 1977 Ribulose-1, 5-diphosphate carboxylase in heterocysts and vegetative cells ofAnabaena cylindrica. FEMS Microbiol. Letts. 2, 247–249.

    Google Scholar 

  22. Cossar J D, Rowell P and Stewart W D P 1984 Thioredoxin as a modulator of glucose-6-phosphate dehydrogenase in a N2-fixing cyanobacterium. J Gen. Microbiol. 130, 991–998.

    Google Scholar 

  23. Cossar J D, Rowell P, Darling A J, Murray S, Codd G A and Stewart W D P 1985 Localization of ribulose 1,5-bisphosphate carboxlase/oxygenase in the N2-fixing cyanobacteriumAnabaena cylindrica. FEMS Microbiol. Letts. 28, 65–68.

    Google Scholar 

  24. Cossar J D, Darling A J, Ip S M, Rowell P and Stewart W D P 1985 Immunocytochemical localization of thioredoxins in the cyanobacteriaAnabaena cylindrica andAnabaena variabilis. J. Gen. Microbiol. (In press).

  25. Crawford N W, Sutton C W, Yee B C, Johnson T C, Carlson D C and Buchanan B B 1984 Contrasting modes of photosynthetic enzyme regulation in oxygenic and anoxygenic prokaryotes. Arch. Microbiol. 139, 124–129.

    Google Scholar 

  26. Darling A J, Rowell P and Stewart W D P 1985 Characterization of thioredoxin from the cyanobacteriumAnabaena variabilis (In preparation).

  27. De La Torre A, Lara C, Yee B C, Malkin R and Buchanan B B 1982 Physiochemical properties of ferralterin, a regulatory iron-sulphur protein functional in oxygenic photosynthesis. Arch. Biochem. Biophys 213, 545–550.

    Google Scholar 

  28. Dixon R A, Alvarez Morales A, Clements J, Drummond M, Merrick M and Postgate J R 1984 Transcriptional control of thenif regulon inKlebsiella pneumoniae. In Advances in Nitrogen Fixation Research. Eds. C Veeger and W E Newton. pp 635–642. Nijhoff/Nunk, Pudoc.

  29. Dixon R A, Buck M, Drummond M, Hawkes T, Khan H, MacFarlane S, Merrick Mand Postgate J R 1985 Regulation of the nitrogen fixation genes inKlebsiella pneumoniae: implications for genetic manipulation 90, 225–233.

  30. Dugdale R C, Goering J J and Ryther J H 1964 High nitrogen fixation rates in the Sargasso Sea and the Arabian Sea. Limnol. Oceanogr. 9, 507–510.

    Google Scholar 

  31. Dugdale R C, Menzel D W and Ryther J H 1961 Nitrogen fixation in the Sargasso Sea. Deep Sea Res. 7, 298–300.

    Google Scholar 

  32. Duggan J X and Anderson L E 1975 Light regulation of enzyme activity inAnacystis nidulans (Richt.). Planta 122 293–297.

    Google Scholar 

  33. Evans H J, Emerich F W, Lepo J E, Maier R J, Carter K R, Hanus F J and Russell S A 1980 The role of hydrogenase in nodule bacteroids and free-living rhizobia.In Nitrogen Fixation. Eds. W D P Stewart and J R Gallon. pp 55–81. Academic Press, London.

    Google Scholar 

  34. Evans H J, Hanus F J, Russell S A, Harker A R, Lambert G R and Dalton D A 1985 Biochemical characterization, evaluation and genetics of H2 recycling inRhizobium.In Nitrogen Fixation and CO2 Metabolism. Eds. P W Ludden and J E Burris. pp 3–11. Elsevier, New York.

    Google Scholar 

  35. Fay P, Stewart W D P, Walsby A E and Foggg G E 1968 Is the heterocyst the site of nitrogen fixation in blue-green algae? Nature 220, 810–812.

    Google Scholar 

  36. Fleming H and Haselkorn R 1973 Differentiation inNostoc muscorum: nitrogernase is synthesized in heterocysts. Proc. Natl. Acad. Sci., USA 70, 2727–2731.

    Google Scholar 

  37. Fleming H and Haselkon R 1974 The program of protein synthesis during heterocyst differentiation in nitrogen-fixing blue-green algae. Cell 3, 159–170.

    Google Scholar 

  38. Gallon J R 1980 Nitrogen fixation by photoautotrophs.In Nitrogen Fixation. Eds. W D P Stewart and J R Gallon. pp 197–238. Academic Press, London.

    Google Scholar 

  39. Gallon J R, Kurz W G W and La Rue T A 1975 The physiology of nitrogren fixation by aGloeocapsa sp.In Nitrogen Fixation by Free-living microorganisms. Ed. W D P Stewart. pp 159–173. Cambridge University Press.

  40. Gest H and Kamen M D 1949 Photoproduction of molecular hydrogen byRhodospirillum rubrum. Science 109, 558–559.

    Google Scholar 

  41. Gest H and Kamen M D 1949 Studies on the metabolism of photosynthetic bacteria. IV. Photochemical production of molecular hydrogen by growing cultures of photosynthetic bacteria. J. Bacteriol. 58, 239–245.

    Google Scholar 

  42. Golden J W, Robinson S J and Haselkorn R 1985 Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacteriumAnabaena. Nature 314, 419–423.

    Google Scholar 

  43. Gotto J W and Yoch D C 1982 Regulation ofRhodospirillum rubrum nitrogenase activity. Properties and interconversion of active and inactive Fe protein. J. Biol. Chem. 257.

  44. Gotto J W and Yoch D C 1982 Purification and Mn2+ activation ofRhodospirillum rubrum nitrogenase activating enzyme. J. Bacteriol. 152, 714–721.

    Google Scholar 

  45. Gupta V K and Anderson L E 1978 Light modulation of the activity of carbon metabolism enzymes in the crassulacean acid metabolism plantKalanchoe. Pl. Physiol. 61, 469–471.

    Google Scholar 

  46. Guth J H and Burris R H 1983 Comparative study of the active and inactive forms of dinitrogenase reductase fromRhodospirillum rubrum. Biochim. Biophys. Acta. 749, 91–100.

    Google Scholar 

  47. Guth J H and Burris R H 1983 The role of Mg2+ and Mn2+ in the enzyme catalysed activation of nitrogenase Fe protein fromRhodospirillum rubrum. Biochem. J. 213, 741–749.

    Google Scholar 

  48. Haaker H, Braaksma A, Cordewener J, Klugkist J, Wassink H, Grande H, Eady R and Veeger C C 1984 Iron-sulfide content and ATP-binding properties of nitrogenase component II fromAzotobacter vinelandii.In Advances in Nitrogen Fixation Research Eds. C Veeger and W Newton. pp 123–131. Nijhoff/Junk, Pudoc.

  49. Hamadi A F and Gallon J R 1981 Calcium ions oxygen and acetylene reduction (nitrogen fixation) in the unicellular cyanobacteriumGloeocapsa sp. 1430/3. J. Gen. Microbiol. 125, 391–398.

    Google Scholar 

  50. Haselkorn R, Golden J, Robinson S J, Avtges P, Kranz R G and Scolnik A 1985 Organization of the genes for nitrogen fixation in cyanobacteria and photosynthetic bacteria.In Nitrogen Fixation of CO2 Metabolism. Eds. P W Ludden and J E Burris. pp 83–90. Elsevier, New York.

    Google Scholar 

  51. Heuer B, Hansen M J and Anderson L E 1982 Light modulation of phosphofruktokinase in pea leaf chloroplasts. Pl. Physiol. 69, 1404–1406.

    Google Scholar 

  52. Houchins J P 1985 Electron-transfer chains of cyanobacterial heterocysts.In Nitrogen Fixation and CO2 Metabolism. Eds. P W Ludden and J E Burris. pp 261–268. Elsevier, New York.

    Google Scholar 

  53. Houchins J P and Hind G 1982 Pyridine nucleotides and H2 as electron donors to the respiratory and photosynthetic electron transfer chains and to nitrogenase inAnabaena heterocysts. Biochim. Biophys. Acta 682, 86–96.

    Google Scholar 

  54. Houchins J P and Hind G 1983 Flash spectroscopic characterization of photosynthetic electron transport in isolated heterocysts. Arch. Biochem. Biophys. 224, 272–282.

    Google Scholar 

  55. Hutcheson S W, Crawford N A, Buchanan B B and Jacquot J-P 1983 The ferredoxin/ thioredoxin system of a C4 plant.In Thioredoxins Structure and Functions. Ed P Gadal. pp 235–243. CNRS, Paris.

    Google Scholar 

  56. Imperial J, Shah V K, Ugalde R A and Brill W J 1984 Biosynthesis of the iron-molybdenum cofactor (FeMo-co) in the absence of nitrogenase.In Abs. Fourteenth Steenbock Symposium: Nitrogen Fixation and CO2 Metabolism Abs. 66.

  57. Ip S-M, Rowell P, Aitken A and Stewart W D P 1984 Purification and characterization of thioredoxin from the N2-fixing cyanobacteriumAnabaena cylindrica. Eur. J. Biochem. 141, 497–504.

    Google Scholar 

  58. Jacobson M R, Premakumar R and Bishop P E 1984 Evidence for the presence of two copies of thenifH gene inAzotobacter vinelandii. In Abs. Fourteenth Steenbock Symposium: Nitrogen Fixation and CO2 Metabolism. Abs. 59.

  59. Johnson H S 1971 NADP-malate dehydrogenase: photoactivation in leaves of plants with Calvin cycle photosynthesis. Biochem. Biophys. Res. Commun. 43, 703–709.

    Google Scholar 

  60. Jouanneau Y, Siefert E and Pfennig N 1980 Microaerobic nitrogenase activity inThiocapsa sp. strain 5811. FEMS Microbiol. Letts. 9, 89–93.

    Google Scholar 

  61. Juttner F and Carr N G 1976 The movement of organic molecules from vegetative cells into heterocysts ofAnabaena cylindrica. Proc. Second Int. Symp. on Photosynthetic Prokaryotes. Eds. G A Codd and W D P Stewart. pp 121–123. University of Dundee, Dundee.

    Google Scholar 

  62. Kallas T, Rippka R, Coursin T, Rebiere M C, Tandeau de Marsac N and Cohen Bazire G 1983 Aerobic nitrogen fixation by non heterocystous cyanobacteria.In Photosynthetic Prokaryotes: Cell Differentiation and Function. Eds G C Papageorgiou and L Packer. pp 281–302. Elsevier, New York.

    Google Scholar 

  63. Kanemoto R H, Saari L, Pope M, Dowling Paul T, Lowery R, Murrell S and Ludden P W 1985Nitrogen fixation inRhodospirillum rubrum: the regulation of Fe protein and its activating enzymeIn Nitrogen Fixation and CO2 Metabolism. Eds. P W Ludden and J E Burris. pp 253–260. Elsevier, New York.

    Google Scholar 

  64. Karni L and Tel-Or E 1983 Isocitrate dehydrogenase as a potential electron donor to nitrogenase ofNostoc muscorum.In Photosynthetic Prokaryotes: Cell Differentiation and Function. Eds G C Papageorgiou and L Packer. pp 257–264. Elsevier, New York.

    Google Scholar 

  65. Karni L, Miller N and Tel-Or E 1982 Isocitrate dehydrogenase as a potential electron donor to nitrogenase ofNostoc muscorum. Israel J. Bot. 31, 190–198.

    Google Scholar 

  66. Kerby N W, Rowell P and Stewart W D P 1985 Ethylenediamine uptake and metabolism in the cyanobacteriumAnabaena variabilis. Arch. Microbiol. 141, 244–248.

    Google Scholar 

  67. Leach C K and Carr N G 1971 Pyruvate: ferredoxin oxidoreductase and its activation by ATP in the blue green algaAnabaena variabilis Biochim. Biophys. Acta 245, 165–174.

    Google Scholar 

  68. Lex M and Carr N G 1974 The metabolism of glucose by heterocysts and vegetative cells ofAnabaena cylindrica. Arch. Microbiol. 101, 161–167.

    Google Scholar 

  69. Lex M and Stewart W D P 1973 Algal nitrogenase, reductant pools and photosystem I activity. Biochem. Biophys. Acta 292 436–443.

    Google Scholar 

  70. Lockau W 1981 Evidence for a dual role of cytochrome c-553 and plastocyanin in photosynthesis and respiration of the cyanobacteriumAnabaena variabilis. Arch. Microbiol. 128, 336–340.

    Google Scholar 

  71. Lockau W, Peterson R B, Wolk C P and Burris R H 1978 Modes of reduction of nitrogenase in heterocysts isolated fromAnabaena species. Biochim. Biophys. Acta 502, 298–308.

    Google Scholar 

  72. Lowe D J, Thorneley R N F and Postgate J R 1984 The mechanism of substrate reduction by nitrogenase.In Advances in Nitrogen Fixation Research. Eds. C Veeger and W E Newton. pp 133–138. Nijhoff/Junk. Pudoc.

  73. Ludden P W and Burris J E 1985 Eds. Nitrogen Fixation and CO2 Metabolism. Elsevier, New York.

    Google Scholar 

  74. Ludden P W and Burris R H 1976 Activating factor for the iron protein of nitrogenase fromRhodospirillum rubrum. Science 194 424–426.

    Google Scholar 

  75. Ludden P W and Burris R H 1978 Purification and properties of nitrogenase fromRhodospirillum rubrum and evidence for phosphate, ribose and an adenine-like unit covalently bound to the iron protein. Biochem. J. 175 251–259.

    Google Scholar 

  76. Ludden P W and Burris R H 1979 Removal of an adenine-like molecule during activation of dinitrogenase reductase fromRhodospirillum rubrum. Proc. Natl. Acad. Sci. USA 76, 6201–6205.

    Google Scholar 

  77. Ludden P W and Burris R H 1981In vivo andin vitro studies on ATP and electron donors to nitrogenase inRhodospirillum rubrum. Arch. Microbiol. 130, 155–158.

    Google Scholar 

  78. Ludden P W, Preston G G and Dowling T E 1982 Comparison of active and inactive forms of iron protein fromRhodospirillum rubrum. Biochem. J. 203, 663–668.

    Google Scholar 

  79. Mackey E J and Smith G D 1983 Adaptation of the cyanobacteriumAnabaena cylindrica to high oxygen tensions. FEBS Letts. 156, 108–112.

    Google Scholar 

  80. Madigan M T, Wall J D and Gest H 1979 Dark anaerobic dinitrogen fixation by a photosynthetic organism. Science 204, 1429–1430.

    Google Scholar 

  81. McKenna C E, Stephens P J, Eran H, Luo G-M, Zhang F X, Ding M and Nguyen H T 1984 Substrate interactions with nitrogenase and its Fe−Mo cofactor: chemical and spectroscopic investigations.In Advances in Nitrogen Fixation Research. Eds. C Veeger and W E Newton. pp 115–122. Nijhoff/Junk, Pudoc.

  82. Meyer J, Kelley B C and Vignais P M 1978 Nitrogen fixation and hydrogen metabolism in photosynthetic bacteria. Biochimie 60, 245–260.

    Google Scholar 

  83. Mullineaux P M, Chaplin A E and Gallon J R 1979 The short-term effect of transfer from light to darkness on acetylene reduction (nitrogen fixation) by cultures ofGloeocapsa sp. 1430/3. Biochem. Soc. Trans 7, 1295–1297

    Google Scholar 

  84. Mullineaux P M, Gallon J R and Chaplin A E 1981 Acetylene reduction (nitrogen fixation) by cyanobacteria grown under alternating light-dark cycles. FEMS Microbiol. Letts. 10, 245–247.

    Google Scholar 

  85. Murry M A, Jensen D B and Benemann J R 1983 Role of ammonia in regulation of nitrogenase synthesis and activity inAnabaena cylindrica. Biochim. Biophys. Acta 756, 13–19.

    Google Scholar 

  86. Murry M A, Horne A J and Benemann J R 1984 Physiological studies of oxygen protection mechanisms in the heterocysts ofAnabaena cylindrica. Appl. Env. Microbiol. 47, 449–454.

    Google Scholar 

  87. Nakamoto H and Sugiyama T 1982 Partial characterization of thein vitro activation of inactive pyruvate, Pi dikinase from darkened maize leaves. Pl. Physiol. 69, 749–753.

    Google Scholar 

  88. Neuer G, Papen H and Bothe H 1983 Heterocyst biochemistry and differentiation.In Photosynthetic Prokaryotes. Cell Differentiation and Function. Eds. G C Papageorgiou and L Packer. pp 219–242. Elsevier, New York.

    Google Scholar 

  89. Nordlund S, Eriksson U and Baltscheffsky H 1977 Necessity of a membrane component for nitrogenase activity inRhodospirillum rubrum. Biochim. Biophys. Acta 462, 187–195.

    Google Scholar 

  90. Nordlund S, Eriksson U, and BaltscheffskyH 1978 Properties of the nitrogenase system from a photosynthetic bacteriumRhodospirillum rubrum. Biochim. Biophys. Acta. 504, 248–254.

    Google Scholar 

  91. Papen H, Neuer G, Rafaian M and Bothe H 1983 The isocitrate dehydrogenase from cyanobacteria. Arch. Microbiol. 134, 73–79.

    Google Scholar 

  92. Pearson H W, Howsley R, Kjeldsen C K and Walsby A E 1979 Aerobic nitrogenase activity associated with a non heterocystous filamentous cyanobacterium. FEMS Microbiol. Letts. 5, 163–167.

    Google Scholar 

  93. Peterson R B and Wolk C P 1978 High recovery of nitrogenase activity and of55Fe-labelled nitrogenase in heterocysts isolated fromAnabaena variabilis. Proc. Natl. Acad. Sci. USA. 75, 6271–6275.

    Google Scholar 

  94. Pienkos P T, Bodmer S and Tabita F R 1983 Oxygen inactivation and recovery of nitrogenase activity in cyanobacteria. J. Bacteriol. 153, 182–190.

    Google Scholar 

  95. Polukhina L E, Sakhurieva G N and Shestakov S V 1982 Ethylenediamine-resistantAnabaena variabilis mutants with derepressed nitrogen-fixing system. Microbiology 51, 90–95.

    Google Scholar 

  96. Preston G G and Ludden P W 1982 Change in subunit composition of the iron protein of nitrogenase fromRhodospirillum rubrum during activation and inactivation of iron protein. Biochem. J. 205, 489–494

    Google Scholar 

  97. Privalle L S and Burris R H 1984 D-erythrose supports nitrogenase activity in isolatedAnabaena sp. strain 7120 heterocysts. J. Bacteriol. 157, 350–356.

    Google Scholar 

  98. Rao I M and Anderson L E 1983 Light and stomatal metabolism. I. Possible involvement of light modulation of enzymes in stomatal movement. Pl. Physiol. 71, 451–455.

    Google Scholar 

  99. Renaud J, Sasson A, Pearson H W and Stewart W D P 1975 Nitrogen-fixing algae in Morocco.In Nitrogen Fixation by Free-living Microorganisms. Ed. W D P Stewart, pp 229–246. Cambridge University Press, Cambridge.

    Google Scholar 

  100. Rice D, Mazur B J and Haselkorn R 1982 Isolation and physical mapping of nitrogen fixation genes from the cyanobacteriumAnabaena 7120. J. Biol. Chem. 257, 13157–13163.

    Google Scholar 

  101. Rippka R and Waterbury J B 1977 The synthesis of nitrogenase by non-heterocystous cyanobacteria. FEMS Microbiol. Letts. 2, 83–86.

    Google Scholar 

  102. Robson R L 1979 Characterisation of an oxygen-stable nitrogenase complex isolated fromAzotobacter chroococcum. Biochem. J. 181, 569–575.

    Google Scholar 

  103. Robson R L and Postgate J R 1980 Oxygen and hydrogen in biological nitrogen fixation. Annu. Rev. Microbiol. 34, 183–207.

    Google Scholar 

  104. Robson R, Jones R, Kennedy C K, Drummond M, Ramos J, Woodley P R, Wheeler C, Chesshyre J and Postgate J R 1984 Aspects of genetics ofAzotobacters.In Advances in Nitrogen Fixation Research. Eds C Veeger and W E Newton. pp 643–652. Nijhoff/Junk, Pudoc.

  105. Schaeffer F and Stanier R Y 1978 Glucose-6-phosphate dehydrogenase ofAnabaena sp. Kinetic and molecular properties. Arch. Microbiol. 116, 9–19.

    Google Scholar 

  106. Scherings G, Haaker H and Veeger C 1977 Regulation of nitrogen fixation by Fe−S protein II inAzotobacter vinelandii. Eur. J. Biochem. 77, 621–630.

    Google Scholar 

  107. Schmidt A 1981 A thioredoxin-activated fructose-1, 6-bisphosphatase from the cyanobacteriumSynechococcus 6301. Planta 152, 101–104.

    Google Scholar 

  108. Schrautemeier B, Bohme H and Boger P 1984In vitro studies on pathways and regulation of electron transport to nitrogenase with a cell free extract from heterocysts ofAnabaena variabilis. Arch. Microbiol. 137, 14–20.

    Google Scholar 

  109. Shah V K and Brill W J 1977 Isolation of an iron-molybdenum cofactor from nitrogenase. Proc. Natl. Acad. Sci. USA 74, 3249–3253.

    Google Scholar 

  110. Shah V K, Imperial J, Ugalde R A and Brill W J 1984 Site specific inhibition of activation of nitrogenase by the iron-molybdenum cofactor.In Abs. Fourteenth Steenbock Symposium: Nitrogen Fixation and CO2 Metabolism Abs. 84.

  111. Shethna V I 1970 Non-heme iron (iron-sulphur) proteins ofAzotobacter vinelandii. Biochem. Biophys. Acta 205, 58–62.

    Google Scholar 

  112. Shine J, Schofield P R, Wienman J J, Fellows F, Badenoch-Jones J, Morrison N, Scott K F, Gresshoff P M, Watson J M and Rolfe B G 1984 Molecular cloning and organisation of genes involved in symbiotic nitrogen fixation in differentRhizobium species.In Advances in Nitrogen Fixation Research. Eds. C Veeger and W E Newton. pp 621–626. Nijhoff/Junk, Pudoc.

  113. Siefert E and Pfennig N 1980 Diazotrophic growth ofRhodopseudomonas acidophila andRhodopseudomonas capsulata under microaerobic conditions in the dark. Arch. Microbiol. 125, 73–77.

    Google Scholar 

  114. Simpson F B and Burris R H 1984 The effect of 50 atm. pN2 on H2 evolution by nitrogenase and the kinetics of substrate uptake and product formation by nitrogenase followed with a membrane-link mass spectrometer.In Abs. Fourteenth Steenbock Symposium: Nitrogen Fixation and CO2 Metabolism Abs. 86.

  115. Singh H N, Rai U N, Rao V V and Bagchi S N 1983 Evidence for ammonia as an inhibitor of heterocyst and nitrogenase formation in the cyanobacteriumAnabaena cycadeae. Biochem. Biophys. Res. Commun. 111, 180–187.

    Google Scholar 

  116. Singh P K 1973 Nitrogen fixation by the unicellular blue-green algaAphanothece. Arch. Microbiol. 92, 59–62.

    Google Scholar 

  117. Smith B E and Lang G 1974 Mossbauer spectroscopy of the nitrogenase proteins fromKlebsiella pneumoniae. Structural assignments and mechanistic conclusions. Biochem. J. 137, 169–180.

    Google Scholar 

  118. Smith R V, Noy R JN and Evans M C W 1971 Physiological electron donor systems to the nitrogenase of the blue-green algaAnabaena cylindrica. Biochem. Biophys. Acta 253, 104–109.

    Google Scholar 

  119. Stahl L J and Krumbein W E 1981 Aerobic nitrogen fixation in pure cultures of a benthic marineOscillatoria (cyanobacteria). FEMS Microbiol. Letts. 11, 295–298.

    Google Scholar 

  120. Stanier R Y 1973 Autotrophy and heterotrophy in unicellular blue-green algae.In The Biology of Blue-green Algae. Eds. N G Carr and B A Whitton. pp 501–518. Blackwell Scientific Publ., Oxford.

    Google Scholar 

  121. Stewart W D P 1973 Nitrogen fixation by photosynthetic microorganisms. Annu. Rev. Microbiol. 27, 283–316.

    Google Scholar 

  122. Stewart W D P 1980 Some aspects of structure and function in nitrogen fixing cyanobacteria. Annu. Rev. Microbiol. 34, 499–536.

    Google Scholar 

  123. Stewart W D P and Codd G A 1975 Polyhedral bodies (carboxysomes) of nitrogenfixing blue-green algae. Br. Phycol. J. 10, 273–278.

    Google Scholar 

  124. Stewart W D P and Lex M 1970 Nitrogenase activity in the blue-green algaPlectonema boryanum strain 594. Arch. Mikrobiol. 73, 250–260.

    Google Scholar 

  125. Stewart W D P and Rowell P 1975 Effects of L-methionine-DL-sulphoximine on the assimilation of newly fixed NH3, acetylene reduction and heterocyst production inAnabaena cylindrica. Biochem. Biophys. Res. Commun. 65, 846–856.

    Google Scholar 

  126. Stewart W D P, Haystead A and Dharmawardene M W N 1975 Nitrogen assimilation and metabolism in blue-green algae.In Nitrogen Fixation by Free-living Microorganisms. Ed. W D P Stewart. pp 129–158. Cambridge University Press, Cambridge.

    Google Scholar 

  127. Stewart W D P, Haystead A and Pearson H W 1969 Nitrogenase activity in heterocysts of blue-green algae. Nature 224, 226–228.

    Google Scholar 

  128. Stewart W D P, Rowell P, Cossar J D and Kerby N W 1985 Physiological studies on N2-fixing cyanobacteria.In Nitrogen Fixation and CO2 Metabolism. Eds. P W Ludden and J E Burris. pp 269–279. Elsevier, New York.

    Google Scholar 

  129. Tozum S R D and Gallon J R 1979 the effects of methylviologen onGloeocapsa sp. LB795 and their relationship to the inhibition of acetylene reduction (nitrogen fixation) by oxygen. J. Gen. Microbiol. 111, 313–326.

    Google Scholar 

  130. Turpin D H, Edie S A and Canvin D T 1984In vivo nitrogenase regulation by ammonium and methylamine and the effect of MSX on ammonium transport inAnabaena flos aquae. Pl. Physiol. 74, 701–704.

    Google Scholar 

  131. Udvardy J, Borbely G, Juhasz A and Farkas G L 1984 Fe3+-chelates mediate the oxidative modulation of cyanobacterial and chloroplast enzymes. FEBS Letts. 172, 11–16.

    Google Scholar 

  132. Udvardy J, Borbely G, Juhasz A and Farkas G L 1984 Thioredoxins and the redox modulation of glucose 6-phosphate dehydrogenase inAnabaena sp. strain PCC 7120 vegetative cells and heterocysts. J. Bacteriol. 157, 681–683.

    Google Scholar 

  133. Udvardy J, Godeh M M, Cseke C and Farkas G L 1983 Redox regulation of fructose-1, 6-bisphosphatase in the cyanobacteriumAnacystis nidulans.In Thioredoxins: Structure and Functions. Ed. P Gadal. pp 199–204. CNRS, Paris.

    Google Scholar 

  134. Ul-Haque M I, Gallon J R and Chaplin A E 1977 The intermediary metabolism of the unicellular blue-green algaGloeocapsa sp. LB795. Biochem. Soc. Trans. 5, 1484–1486.

    Google Scholar 

  135. Van Baalen C 1962 Studies on marine blue-green algae. Botanica Mar. 4, 129–139.

    Google Scholar 

  136. Veeger C and Newton W E 1984 Eds Advances in Nitrogen Fixation Research. Nijhoff/Junk, Pudoc.

  137. Weare N M and Benemann J R 1974 Nitrogenase activity and photosynthesis inPlectonema boryanum. J. Bacteriol. 119, 258–265.

    Google Scholar 

  138. Whittaker M M and Gleason F K 1984 Isolation and characterization of thioredoxin from the filamentous cyanobacteriumAnabaena sp. 7119. J. Biol. Chem. 259, 14088–14093.

    Google Scholar 

  139. Willison J C, Jouanneau Y, Colbeau A and Vignais P M 1983 H2 metabolism in photosynthetic bacteria and relationship to N2 fixation. Ann. Microbiol. (Inst. Pasteur) 134B, 115–135.

    Google Scholar 

  140. Willison J C, Jouanneau Y, Michalski W P, Colbeau A and Vignais P 1983 Nitrogen fixation and H2 metabolism in the bacteriumRhodopseudomonas capsulata.In Photosynthetic Prokaryotes: Cell Differentiation and Function. Eds. G C Papageorgiou and L Packer. pp 333–352. Elsevier, New York.

    Google Scholar 

  141. Winkenbach F and Wolk C P 1973 Activities of enzymes of the oxidative and reductive pentose phosphate pathways in heterocysts of a blue-green alga. Plant Physiol. 52, 480–483.

    Google Scholar 

  142. Wolk C P 1968 Movement of carbon from vegetative cells to heterocysts inAnabaena cylindrica. J. Bacteriol. 96, 2138–2143.

    Google Scholar 

  143. Wolk C P 1979 Developmental biology of cyanobacteria: advances and challenges. Abst. Third Int. Symp. on Photosynthetic Prokaryotes, Oxford. Abst. D1, University of Liverpool, Liverpool.

  144. Wolosiuk R A, Buchanan B B and Crawford N A 1977 Regulation of NADP-malate dehydrogenase by the light activated ferredoxin/thioredoxin system of chloroplasts. FEBS Letts. 81, 253–258.

    Google Scholar 

  145. Wolosiuk R A, Crawford N A, Yee B C and Buchanan B B 1979 Isolation of three thioredoxins from spinach leaves. J. Biol. Chem. 254, 1627–1632.

    Google Scholar 

  146. Wyatt J T and Silvey J K G 1969 Nitrogen fixation byGloeocapsa. Science N.Y. 165, 908–909.

    Google Scholar 

  147. Yee B C, de la Torre A, Crawford N A, Lara C, Carlson D E and Buchanan B B 1981 The ferredoxin-thioredoxin system of enzyme regulation in a cyanobacterium (Nostoc muscorum). Arch. Microbiol. 130, 14–18.

    Google Scholar 

  148. Yoch D E 1979 Manganese, an essential trace element for N2 fixation byRhodospirillum rubrum andRhodopseudomonas capsulata; role in nitrogenase regulation. J. Bacteriol. 142, 899–907.

    Google Scholar 

  149. Zeng D and Burris R H 1984 Binding of adenylate compounds to nitrogenase components.In Abs. Fourteenth Steenbock Symposium: Nitrogen Fixation and CO2 Metabolism. Abs. 90.

  150. Zumft W C and Nordlund S 1981 Stabilization and partial characterization of the activating enzyme for dinitrogenase reductase (Fe protein) fromRhodospirillum rubrum. FEBS Letts. 127, 79–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, W.D.P., Rowell, P. Biochemistry and physiology of nitrogen fixation with particular emphasis on nitrogen-fixing phototrophs. Plant Soil 90, 167–191 (1986). https://doi.org/10.1007/BF02277395

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02277395

Key words

Navigation