Skip to main content
Log in

Binding energies of metal monocations to Β-lactones and Β-lactams. A theoretical study of cyclization effects

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Ab initio calculations have been performed to study the association ofΒ-propiolactam andΒ-propiolactone and their aliphatic analoguesN-methyl acetamide and methyl acetate with different metal monocations: Li+, Na+, Mg+, and Al+, in an effort to investigate cyclization effects on the gas-phase basicities of amides and esters, when the reference acid is not a proton. Similarly to what was found for protonation,N-methyl acetamide andΒ-propiolactam are more basic than methyl acetate andΒ-propiolactone, when the reference acids are the aforementioned metal monocations. However, cyclization effects on the corresponding binding energies for both kind of compounds do not parallel those observed for protonation energies, andΒ-lactone is as basic as methyl acetate when the reference acid is Li+ and slightly more basic than methyl acetate when the attaching ion is Na+. This implies that when the interactions of the bases with the reference acids are essentially electrostatic the reactivity patterns change with respect to those observed when the interactions are essentially covalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tortajada, J.; Leon, E.; Morizur, J. P.; Luna, A.; Mó, O.; Yáñez, M.J. Phys. Chem. 1994,98, 12919

    Google Scholar 

  2. González, A. I.; Mó, O.; Yáñez, M.; Leon, E.; Tortajada, J.; Morizur, J. P.; Leito, I.; Maria, P. C.; Gal, J. F.J. Phys. Chem. in press.

  3. Abboud, J. L. M.; Mó, O.; de Paz, J. L. G.; Yáñez, M.; Esseffar, M.: Bouab, W.; El-Mouhtadi, M.; Mokhlisse, R.; Ballesteros, E.; Herreros, M.; Homan, H.; Lopez-Mardomingo, C.; Notario, R.J. Am. Chem. Soc. 1993,115, 12568.

    Google Scholar 

  4. Abboud, J. L. M.; Cañada, T.; Homan, H.; Notario, R.; Cativiela, C.; Dáz de Villegas, M. D.; Bordejé, M. C.; Mó, O.; Yáñez, M.J. Am. Chem. Soc. 1992,114, 4728.

    Google Scholar 

  5. Bordejé, M. C.; Mó, O.; Yáñez, M.; Herreros, M.; Abboud, J. L. M.J. Am. Chem. Soc. 1993,115, 7389.

    Google Scholar 

  6. Bouchoux, G., Drancourt, D.; Leblanc, D.; Yáñez, M.; Mó, O.New J. Chem. 1995,19, 1243.

    Google Scholar 

  7. Tortajada, J.; Leon, E.; Morizur, J. P.; Luna, A.; Mó, O.; Yáñez, M.J. Phys. Chem. 1995,99, 13890.

    Google Scholar 

  8. Taft, R. W.; Anvia, F.; Gal, J.-F.; Walsh, S., Capon, M.; Holmes, M. C.; Hosn, K.; Oloumi, G.; Vasanwala, R.; Yzadani, S.Pure Appl. Chem. 1990,62, 17.

    Google Scholar 

  9. Greenberg, A.; Hsing, H.-J., Liebman, J. F.J. Mol. Struct. Theochem. 1995,338, 83.

    Google Scholar 

  10. Smith, B. J.; Radom, L.J. Phys. Chem. 1995,99, 6468.

    Google Scholar 

  11. Curtiss, L. A.; Raghavachari, K.; Pople, J. A.J. Chem. Phys. 1993,98, 1293.

    Google Scholar 

  12. Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A.J. Chem. Phys. 1991,94, 7221.

    Google Scholar 

  13. Smith, B. J.; Radom, L.Chem. Phys. Lett. 1994,231, 345.

    Google Scholar 

  14. Gaussian 94, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Hill, P. M. W.; Johnson, B. J.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Peterson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanow, B. B.; Nanayaklara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc. Pittsburgh, PA, 1995.

    Google Scholar 

  15. See for instance, Politzer, P.; Truhlar, D. G.; Eds.Chemical Applications of Atomic and Molecular Electrostatic Potentials. Plenum Press: New York, 1981.

    Google Scholar 

  16. Bader, R. F. W.; Essén, H.J. Chem. Phys. 1984,80, 1943.

    Google Scholar 

  17. Bader, R. F. W.; MacDougall, P. J.; Lau, C. D. H.J. Am. Chem. Soc. 1984,106, 1594.

    Google Scholar 

  18. Bader, R. F. W.Atoms in Molecules. A Quantum Theory; Oxford University Press: New York, 1990.

    Google Scholar 

  19. AIMPAC programs package has been provided by J. Cheeseman and R. F. W. Bader.

  20. Wong, M. W.; Wiberg, K. B.J. Phys. Chem. 1992,96, 668.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordejé, M.C., Mó, O. & Yáñez, M. Binding energies of metal monocations to Β-lactones and Β-lactams. A theoretical study of cyclization effects. Struct Chem 7, 309–319 (1996). https://doi.org/10.1007/BF02275157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02275157

Key words

Navigation