Skip to main content
Log in

Role of intramolecular hydrogen bonds and electron withdrawing groups in the acidity of aldimines and ketimines: a density functional theory study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The role of intramolecular hydrogen bonds and the presence of electron withdrawing groups in the acidity of secondary aldimines and secondary ketimines is investigated by means of density functional theory simulations. We have found that the presence of an intramolecular hydrogen bond can increase the acidity up to ~ 20 kJ mol−1 with respect to structural isomers not showing it. In general, the excess of negative charge in the deprotonated species is hosted by the electron withdrawing group, thus stabilizing the anion and increasing the acidity. Among the studied structures, secondary ketimines, bearing a phenyl group, have shown to present the highest acidity and are therefore potential candidates that would be used for different Michael and nucleophilic additions in the synthesis of important pharmaceutical and natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

    Google Scholar 

  2. Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41(1):48–76. https://doi.org/10.1002/1521-3773(20020104)41:1%3c48:AID-ANIE48%3e3.0.CO;2-U

    Article  CAS  Google Scholar 

  3. Aleman J, Parra A, Jiang H, Jorgensen KA (2011) Squaramides: bridging from molecular recognition to bifunctional organocatalysis. Chem Eur J 17(25):6890–6899. https://doi.org/10.1002/chem.201003694

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Z, Schreiner PR (2009) (Thio)urea organocatalysis-what can be learnt from anion recognition? Chem Soc Rev 38:1187–1198. https://doi.org/10.1039/B801793J

    Article  CAS  PubMed  Google Scholar 

  5. Huang Y, Unni AK, Thadani AN, Rawal VH (2003) Single enantiomers from a chiral-alcohol catalyst. Nature 424:146. https://doi.org/10.1038/424146a

    Article  CAS  PubMed  Google Scholar 

  6. Badiola E, Fiser B, Gómez-Bengoa E, Mielgo A, Olaizola I, Urruzuno I, García JM, Odriozola JM, Razkin J, Oirabide M, Palomo C (2014) Enantioselective construction of tetrasubstituted stereogenic carbons through Brønsted base catalyzed Michael reactions: α′-hydroxy enones as key enoate equivalent. J Am Chem Soc 136(51):17869–177881. https://doi.org/10.1021/ja510603w

    Article  CAS  PubMed  Google Scholar 

  7. Talavera G, Reyes E, Vicario JL, Carrillo L (2012) Cooperative dienamine/hydrogen-bonding catalysis: enantioselective formal [2 + 2] cycloaddition of enals with nitroalkenes. Angew Chem Int Ed 51(17):4104–4107. https://doi.org/10.1002/anie.201200269

    Article  CAS  Google Scholar 

  8. Jung CK, Krische MJ (2006) Asymmetric Induction in hydrogen-mediated reductive aldol additions to α-amino aldehydes catalyzed by rhodium: selective formation of syn-stereotriads directed by intramolecular hydrogen-bonding. J Am Chem Soc 128(51):17051–17056. https://doi.org/10.1021/ja066198q

    Article  CAS  PubMed  Google Scholar 

  9. Inokuma T, Hoashi Y, Takemoto Y (2006) Thiourea-catalyzed asymmetric michael addition of activated methylene compounds to α, β-unsaturated Imides: dual activation of imide by intra- and intermolecular hydrogen bonding. J Am Chem Soc 128(29):9413–9419. https://doi.org/10.1021/ja061364f

    Article  CAS  PubMed  Google Scholar 

  10. Wang P, Li HF, Zhao JZ, Du ZH, Da CS (2017) Organocatalytic enantioselective cross-aldol reaction of o-hydroxyarylketones and trifluoromethyl ketones. Org Lett 19(10):2634–2637. https://doi.org/10.1021/acs.orglett.7b00828

    Article  CAS  PubMed  Google Scholar 

  11. Esteban F, Cieslik W, Arpa EM, Guerrero-Corella A, Díaz-Tendero S, Perles J, Fernández-Salas JA, Fraile A, Alemán J (2018) Intramolecular hydrogen bond activation: thiourea- organocatalyzed enantioselective 1,3-dipolar cycloaddition of salicylaldehyde-derived azomethine ylides with nitroalkenes. ACS Catal 8(3):1884–1890. https://doi.org/10.1021/acscatal.7b03553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guerrero-Corella A, Esteban F, Iniesta M, Martín-Somer A, Parra M, Díaz-Tendero S, Fraile A, Alemán J (2018) 2-Hydroxybenzophenone as chemical auxiliary for the activation of ketiminoesters in the highly enantioselective addition to nitroalkenes under bifunctional catalysis. Angew Chem Int Ed 57(19):5350–5354. https://doi.org/10.1002/anie.201800435

    Article  CAS  Google Scholar 

  13. Choubane H, Garrido-Castro AF, Alvarado C, Martín-Somer A, Guerrero-Corella A, Daaou M, Díaz-Tendero S, Maestro MC, Fraile A, Alemán A (2018) Intramolecular hydrogen-bond activation for the addition of nucleophilic imines: 2-hydroxybenzophenone as a chemical auxiliary. Chem Commun 54:3399–3402. https://doi.org/10.1039/C8CC01479E

    Article  CAS  Google Scholar 

  14. Arpa EM, Frías M, Alvarado C, Alemán J, Díaz-Tendero S (2016) Weakly bonded intermediates as a previous step towards highly enantioselectivity iminium type additions of beta-keto-sulfoxides and sulfones. J Mol Catal A Chem 423:308–318. https://doi.org/10.1016/j.molcata.2016.03.013

    Article  CAS  Google Scholar 

  15. Martín-Sómer A, Arpa EM, Díaz-Tendero S, Alemán J (2018) A density functional theory study of intramolecular hydrogen bond activation of aza-methylene imines in hydrogen bond bifunctional catalysis. Eur J Org Chem. https://doi.org/10.1002/ejoc.201801208

    Article  Google Scholar 

  16. Frisch et al (2013) Gaussian 09, revision E.01. Gaussian, Inc., Wallingford CT

    Google Scholar 

  17. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1–3):215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  18. Hohenstein EG, Chill ST, Sherrill D (2008) Assessment of the performance of the M05−2X and M06−2X exchange-correlation functionals for noncovalent interactions in biomolecules. J Chem Theory Comput 4(12):1996–2000. https://doi.org/10.1021/ct800308k

    Article  CAS  PubMed  Google Scholar 

  19. Thanthirwatte KS, Hohenstein EG, Burns LA, Sherrill CD (2011) Assessment of the performance of DFT and DFT-D methods for describing distance dependence of hydrogen-bonded interactions. J Chem Theory Comput 7(1):88–96. https://doi.org/10.1021/ct100469b

    Article  CAS  Google Scholar 

  20. Walker M, Harvey AJA, Sen A, Dessent CEH (2013) Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J Phys Chem A 117(47):12590–12600. https://doi.org/10.1021/jp408166m

    Article  CAS  PubMed  Google Scholar 

  21. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102(24):7211–7218. https://doi.org/10.1021/ja00544a007

    Article  CAS  Google Scholar 

  22. NBO Version 3.1, Glendening ED, Reed AE, Carpenter JE, Weinhold F

  23. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  24. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928. https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  25. AIMAll (Version 17.11.14), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2017. aim.tkgristmill.com

  26. Fifen JJ, Dhaouadi Z, Nsangou M (2014) Revision of the thermodynamics of the proton in gas phase. J Phys Chem A 118(46):11090–11097. https://doi.org/10.1021/jp508968z

    Article  CAS  PubMed  Google Scholar 

  27. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  28. Tosovic J, Markovic S, Milenkovic D, Markovic Z (2016) Solvation enthalpies and Gibbs energies of the proton and electron—influence of solvation models. J Serb Soc Comput Mech 10:66–76. https://doi.org/10.5937/jsscm1602066T

    Article  Google Scholar 

  29. Markovic Z, Tosovic J, Milenkovic D, Markovic S (2016) Revisiting the solvation enthalpies and free energies of the proton and electron in various solvents. Comput Theor Chem 1077:11–17. https://doi.org/10.1016/j.comptc.2015.09.007

    Article  CAS  Google Scholar 

  30. Aguilar-Galindo F, Ocón P, Poyato JML (2017) Exploring the catalytic efficiency of X-doped (X = B, N, P) graphene in oxygen reduction reaction: influence of solvent and border effects. Int J Quantum Chem 118:e25579. https://doi.org/10.1002/qua.25579

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the generous allocation of computer time at the Centro de Computación Científica of the Universidad Autonónoma de Madrid (CCC-UAM). This work was partially supported by the projects CTQ2016-76061-P & CTQ2015-64561-R of the Spanish Ministerio de Economía y Competitividad (MINECO). F.A.G. acknowledges the FPI grant associated with the project CTQ2013-43698-P (MINECO). Financial support from the MINECO through the “María de Maeztu” Program for Units of Excellence in R&D (MDM-2014-0377) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Díaz-Tendero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018).

Appendix

Appendix

See Tables 2, 3, 4, 5 and 6.

Table 2 Neutral and anionic conformers of the studied molecules with structure A with the different electron withdrawing groups considered. Relative energies are given in kJ mol−1
Table 3 Neutral and anionic conformers of the studied molecules with structure B with the different electron withdrawing groups considered. Relative energies are given in kJ mol−1
Table 4 Neutral and anionic conformers of the studied molecules with structure C with the different electron withdrawing groups considered. Relative energies are given in kJ mol−1
Table 5 Neutral and anionic conformers of the studied molecules with structure D with the different electron withdrawing groups considered. Relative energies are given in kJ mol−1
Table 6 Neutral and anionic conformers of the studied molecules with structure E with the different electron withdrawing groups considered. Relative energies are given in kJ mol−1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Galindo, F., Tuñón, A.M., Fraile, A. et al. Role of intramolecular hydrogen bonds and electron withdrawing groups in the acidity of aldimines and ketimines: a density functional theory study. Theor Chem Acc 138, 59 (2019). https://doi.org/10.1007/s00214-019-2451-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2451-0

Keywords

Navigation