Skip to main content
Log in

Comparison and evaluation of HIC columns of different hydrophobicity

  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

Retention and selectivity in hydrophobic interaction chromatography (HIC) depend both on the type of stationary phase and on the mobile phase. In the last few years various high performance packing materials and columns have been introduced for HIC resulting in a range of different retentions and selectivity. We have investigated the effect of the stationary phase on the retention of various proteins. The retention of some solutes of different hydrophobicities were measured on three commercial HIC columns (TSK-Phenyl, Synchropack-Propyl, CAA-HIC) under isocratic conditions using water-methanol mixtures as eluent. The log kw values determined according to the literature were devalues determined according to the literature were dependent on the type and structure of the stationary phase and indicated a much less hydrophobic character for these columns than that obtained for reversed phase columns. Gradient separations were then carried out on a standard protein mixture using ammonium sulfate and sodium citrate to change the gradient time. In order to compare the effect of the stationary phase and the two salts investigated apparent capacity factors (kg) were determined and plotted against the gradient time obtained for the three columns in the two eluent system. It was shown that the type of stationary phase had a significant effect on the retention of proteins. In addition, the effect of the mobile phase composition, i.e. salt type, was considerably different on the various stationary phases. In order to exploit the potential of HIC to modulate selectivity for the separation of proteins, the combined effect of the stationary phase and the type of salt should be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Fausnaugh, E. Pfannkoch, S. Gupta, F.E. Regnier, Anal. Biochem.137, 464 (1984).

    Google Scholar 

  2. J.L. Fausnaugh, L.A. Kennedy, F.E. Regnier, J. Chromatogr.317, 141 (1984).

    Google Scholar 

  3. W.R. Melander, D. Corradini, Cs. Horváth, J. Chromatogr.317, 67 (1984).

    Google Scholar 

  4. J.P. Chang, Z. El Rassi, Cs. Horváth, J. Chromatogr.396, 399 (1985).

    Google Scholar 

  5. W. Melander, Cs. Horváth, Arch. Biochem. Biophys.183, 200 (1977).

    Google Scholar 

  6. M.L. Heinitz, L.A. Kennedy, W. Kopaciewicz, R.E. Regnier, J. Chromatogr.443, 173 (1988).

    Google Scholar 

  7. L. Szepesy, Cs. Horváth, Chromatographia26, 13 (1988).

    Google Scholar 

  8. D.R. Nau, Bio Chromatography4, 62 (1989).

    Google Scholar 

  9. D.J. Gisch, T.S. Reid, Bio Chromatography4, 74 (1989).

    Google Scholar 

  10. I. Kleinmann, J. Plicka, P. Smidl, V. Svoboda, J. Chromatogr.479, 327 (1989).

    Google Scholar 

  11. W.R. Melander, Z. El Rassi, Cs. Horváth, J. Chromatogr.469, 3 (1989).

    Google Scholar 

  12. N.T. Miller, B.L. Karger, J. Chromatogr.326, 45 (1985).

    Google Scholar 

  13. J.A. Smith, M. O'Hare, J. Chromatogr.496, 71 (1989).

    Google Scholar 

  14. N. Cook, P. Shieh, N. Miller, LC-GC Int.3, 8 (1990).

    Google Scholar 

  15. P. Smidl, J. Kleinmann, J. Plicka, V. Svoboda, J. Chromatogr.523, 131 (1990).

    Google Scholar 

  16. Th. Braumann, L.H. Grimme, J. Chromatogr.206, 7 (1981).

    Google Scholar 

  17. T.L. Hafkenscheid, E. Tomlinson, J. Chromatogr.218, 409 (1981).

    Google Scholar 

  18. Th. Braumann, G. Weber, L.H. Grimme, J. Chromatogr.261, 329 (1983).

    Google Scholar 

  19. K. Valkó, J. Liq. Chromatogr.10, 1663 (1987).

    Google Scholar 

  20. Th. Braumann, J. Chromatogr.373, 191 (1986).

    Google Scholar 

  21. H. Engelhardt, H. Low, W. Gotzinger, J. Chromatogr.544, 371 (1991).

    Google Scholar 

  22. Th. Braumann, H.G. Genieser, C. Lullmann, B. Jastorff, Chromatographia24, 777 (1987).

    Google Scholar 

  23. H. Engelhardt, M. Jungheim, Chromatographia29, 59 (1990).

    Google Scholar 

  24. L.R. Snyder, J.W. Dolan, J.R. Grant, J. Chromatogr.165, 3 (1979).

    Google Scholar 

  25. L.R. Snyder, in:Cs. Horváth (ed), High-Performance Liquid Chromatography: Advances and Perspectives, Vol. 1, Academic Press, New York, 1980, Ch. 4.

    Google Scholar 

  26. L.R. Snyder, M.A. Stadalius, M.A. Quarry, Anal. Chem.55 1412A (1983).

    Google Scholar 

  27. G. Rippel, L. Szepesy, in preparation.

  28. Z. El Rassi, L. F. de Ocampo, M.D. Bacolod, J. Chromatogr.499, 141 (1990).

    Google Scholar 

  29. J.L. Fausnaugh, F.E. Regnier, J. Chromatogr.359, 131 (1986).

    Google Scholar 

  30. T. Arakawa, S.N. Timasheff, Biochemistry21, 6545 (1982).

    Google Scholar 

  31. T. Arakawa, S.N. Timasheff, Biochemistry23, 5912 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Leslie S. Ettre on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szepesy, L., Rippel, G. Comparison and evaluation of HIC columns of different hydrophobicity. Chromatographia 34, 391–397 (1992). https://doi.org/10.1007/BF02268374

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02268374

Key Words

Navigation