Skip to main content
Log in

“Fundamental” and “practical” adhesion in polymer-fiber systems

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

The relationship between adhesion and bond strength in thin fiber-polymer matrix systems was studied. Adhesive interaction in composite materials was analyzed within the scope of thermodynamic and molecular-kinetic theories of adhesion. Methods based on wetting are shown to give poor estimation of the work of adhesion in fiber-polymer systems, which is due to their low sensibility to donor-acceptor interactions taking place at the interface. Important information about the acidity and basicity of contacting surfaces can be obtained by using inverse gas chromatography to investigate the thermodynamics of adsorption. The calculation of the work of adhesion including acid-base interactions shows the best agreement with the bond strength in the same systems. The local (ultimate) interfacial shear strength is proposed to characterize the quality of fiber-matrix bonding. Analysis of the relationship between the work of adhesion and adhesive pressure for various systems allowed us to differentiate the dispersive and acid-base components of the local bond strength as well as to estimate distances characteristic of these two

Types of interaction. For dispersive forces, our estimation gives 7–8Å, i.e., of an order of magnitude of the center-to-center distance for van der Waals interactions. At the same time, the acid-base

Interactions have a characteristic range of 4–5Å and can be attributed to hydrogen bonding. The agreement between the calculated distances and literature data is evidence for the applicability of the proposed method to the analysis of the adhesive interaction in fibrous polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. S. Lipatov, Physicochemical Foundations of Filling of Polymers [in Russian], Khimiya, Moscow (1991).

    Google Scholar 

  2. M. R. Piggot, “Why interface testing by single-fiber methods can be misleading,” Compos. Sci. Technol.,57, 965–974 (1997).

    Article  Google Scholar 

  3. J.-P. Favre, G. Desarmot, O. Sudre, and A. Vassel, “Were McGarry or Shiriajeva right to measure glass fiber adhesion?” Compos. Interf.,4, 313–326 (1997).

    Google Scholar 

  4. A. Hampe and C. Marotzke, “The energy release rate of the fiber/polymer matrix interface: measurement and theoretical analysis,” J. Reinf. Plast. Compos.,16, 341–352 (1997).

    Google Scholar 

  5. R. P. Kusy and M. J. Katz, “Generalized theory of the total fracture surface energy for glassy organic polymers,” Polymer,19, 1345–1357 (1978).

    Article  Google Scholar 

  6. K. L. Mittal, “Adhesion measurements of films and coatings,” in: K. L. Mittal (ed.), VSP, Zeist, Netherlands (1995), pp. 1–13.

    Google Scholar 

  7. A. J. Kinloch, Adhesion and Adhesives: Science and Technology. Chapman and Hall, London (1987).

    Google Scholar 

  8. D. E. Packham, “Work of adhesion: contact angles and contact mechanics,” Int. J. Adh. Adhesives,16, 121–128 (1996).

    Article  Google Scholar 

  9. A. A. Berlin and V. E. Basin, The Foundations of Polymer Adhesion [in Russian], Khimiya, Moscow (1974).

    Google Scholar 

  10. G. S. Sheu and S. S. Shyu, “Surface modification of Kevlar-149 fibers by gas plasma treatment. Part II. Improved interfacial adhesion to epoxy resin,” J. Adh. Sci. Technol.,8, 1027–1042 (1994).

    Google Scholar 

  11. H. D. Wagner, H. E. Gallis, and E. Wiesel, “Study of the interface in Kevlar-49 epoxy composites by means of microbond and fragmentation tests: effects of materials and testing variables,” J. Mater. Sci.,28, 2238–2244 (1993).

    Article  Google Scholar 

  12. F. P. Lui, M. P. Wolcott, D. J. Gardner, and T. G. Rials, “Characterization of the interface between cellulosic fibers and a thermoplastic matrix,” Compos. Interf.,2, 413–432 (1994).

    Google Scholar 

  13. H.-J. Jacobasch, K. Grundke, P. Uhlmann, F. Simon, and E. Mäder, “Comparison of surface-chemical methods for characterizing carbon fiber-epoxy resin composites,” Compos. Interf.,3, 275–291 (1996).

    Google Scholar 

  14. M. Nardin and J. Schultz, “Relationship between fiber-matrix adhesion and the interfacial shear strength in polymer-based composites,” Compos. Interf.,1, 172–192 (1993).

    Google Scholar 

  15. W. Gutowski, “Physico-chemical criteria for maximum adhesion. Part I: Theoretical concepts and experimental evidence,” J. Adh.,19, 29–49 (1985).

    Google Scholar 

  16. W. Gutowski, “Effect of fiber-matrix adhesion on mechanical properties of composites,” in: H. Ishida (ed.), Controlled Interfaces in Composite Materials, New York (1990), pp. 505–520.

  17. E. Mäder, H.-J. Jacobasch, K. Grundke, and T. Gietzelt, “Influence of an optimized interphase on the properties of polypropylene/glass fiber composites,” Composites, Part A,27A, 907–912 (1996).

    Google Scholar 

  18. E. V. Pisanova and S. F. Zhandarov, “Modification of polyamide fiber surfaces by microorganisms,” J. Adh. Sci. Techol.,9, 1291–1301 (1995).

    Google Scholar 

  19. L. V. Zaborskaya, V. A. Dovgualo, and O. R. Yurkevich, “On the interaction of molten thermoplastics and fiber surfaces,” J. Adh. Sci. Technol.,9, 61–71 (1995).

    Google Scholar 

  20. Yu. S. Lipatov and V. I. Myshko, “On the relationship between adhesion and thermodynamic parameters of polymers,” Vysokomol. Soedin., Ser. A,16, 1148–1151 (1974).

    Google Scholar 

  21. Yu. S. Lipatov, Interfacial Phenomena in Polymers [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  22. F. M. Fowkes, “Role of acid-base interfacial bonding in adhesion,” J. Adh. Sci. Techol.,1, 7–27 (1987).

    Google Scholar 

  23. H.-J. Jacobasch, K. Grundke, E. Mäder, K.-H. Freitag, and U. Panzer, “Application of the surface energy concept in polymer processing,” J. Adh. Sci. Technol.,6, 1381–1396 (1992).

    Google Scholar 

  24. P. H. Harding and J. C. Berg, “The role of adhesion in the mechanical properties of filled polymer composites,” J. Adh. Sci. Technol.,11, 471–473 (1997).

    Google Scholar 

  25. R. J. Good, M. K. Chaudhary, and C. J. van Oss, “Theory of adhesive forces across interfaces. 2. Interfacial hydrogen bonds as acid-base phenomena and as factors enhancing adhesion,” in: L.-H. Lee (ed.), Fundamentals of Adhesion, Plenum Press, New York (1991), pp. 153–172.

    Google Scholar 

  26. F. M. Fowkes, Physicochemical Aspects of Polymer Surfaces. Vol. 2, K. L. Mittal (ed.), Plenum Press, New York (1983), pp. 583–603.

    Google Scholar 

  27. B. V. Derjaguin, N. A. Krotova, and V. P. Smilga, Adhesion of Solids, Consultants Bureau, New York (1978).

    Google Scholar 

  28. V. Gutmann, The Donor-Acceptor Approach to Molecular Interactions, Plenum Press, New York (1983).

    Google Scholar 

  29. Yu. A. Gorbatkina, Adhesive Strength of Fiber-Polymer Systems, Ellis Horwood, New York (1992).

    Google Scholar 

  30. R. B. Henstenburg and S. L. Phoenix, “Interfacial shear strength studies using the single-filament-composite test. Pt. II: A probability model and Monte Carlo simulation,” Polym. Compos.,10, 389–408 (1989).

    Article  Google Scholar 

  31. E. V. Pisanova and S. F. Zhandarov, “On the mechanism of failure in microcomposites consisting of single glass fibers in a thermoplastic matrix,” Compos. Sci. Technol.,57, 937–943 (1997).

    Article  Google Scholar 

  32. J. Andersons and V. Tamuzs, “Fiber and interface strength distribution studies with the single-fiber composite test,” Compos. Sci. Technol.,48, 57–63 (1993).

    Article  Google Scholar 

  33. W. Beckert and B. Lauke, “Fracture mechanics finite element analysis of debonding crack extension for a single fiber pull-out specimen,” J. Mater. Sci. Lett.,14, 333–336 (1995).

    Article  Google Scholar 

  34. S. F. Zhandarov and E. V. Pisanova, “The local bond strength and its determination by fragmentation and pull-out tests,” Compos. Sci. Technol.,57, 957–964 (1997).

    Article  Google Scholar 

  35. M. J. Pitkethly, J. P. Favre, U. Gaur, J. Jakubowski, S. F. Mudrich, D. L. Caldwell, L. T. Drzal, M. Nardin, H. D. Wagner, L. di Landro, A. Hampe, J. P. Armistead, M. Desaeger, and I. Verpoest, “A round-robin programme on interfacial test methods,” Compos. Sci. Technol.,48, 205–214 (1993).

    Article  Google Scholar 

  36. G. Desarmot and J. P. Favre, “Advances in pull-out testing and data analysis,” Compos. Sci. Technol.,42, 151–187 (1991).

    Article  Google Scholar 

  37. C. Marotzke, “The elastic stress field arising in the single fiber pull-out test,” Compos. Sci. Technol.,50, 393–405 (1994).

    Article  Google Scholar 

  38. W. Beckert and B. Lauke, “Finite element calculation of energy release rate for single-fiber pull-out test,” Comput. Mater. Sci.,5, 1–11 (1996).

    Article  Google Scholar 

  39. T. Schüller, Bruchmechanische Modellierung der Mixed-Mode-Belastung bei der Ausbreitung von Faser-Matrix-Grenzflächenrissen unter Berücksichtigung der nichtlinearen Reibungseffekte, Master Thesis, Technische Universität Dresden (1997).

  40. T. Schüller, U. Bahr, W. Beckert, and B. Lauke, “Fracture mechanics analysis of the microbond test,” Composites, Pt. A (1998, accepted for publication).

  41. E. Pisanova, V. Dutschk, and B. Lauke, “Work of adhesion and local bond strength in glass fiber-thermoplastic polymer systems,” J. Adh. Sci. Technol.,12, 305–322 (1998).

    Google Scholar 

  42. V. Dutschk, E. Pisanova, E. Mäder, and K. Schneider, “Can the results obtained by microtension and pull-out techniques be compared?” Compos. Interf. (1998) (in press).

  43. R. J. Scheer and J. A. Nairn, “A comparison of several fracture mechanics methods for measuring interfacial toughness with microbond tests,” J. Adh.,53, 45–68 (1995).

    Google Scholar 

  44. W. Gutowski, “Thermodynamics of adhesion,” in: L.-H. Lee (ed.), Fundamentals of Adhesion, Plenum Press, New York (1991), pp. 87–135.

    Google Scholar 

  45. J. R. Huntsberger, Treatise on Adhesion and Adhesives. Vol. 1, Marcel Dekker, New York (1967).

    Google Scholar 

  46. U. Panzer and H. P. Schreiber, “On the evaluation of surface interactions by inverse gas chromatography,” Macromolecules,25, 172–192 (1992).

    Article  Google Scholar 

  47. N. Takeda, D. Y. Song, K. Nakata, and T. Shioya, “The effect of fiber surface treatment on the micro-fracture progress in glass fiber/Nylon 6 composites,” Compos. Interf.,2, 143–155 (1994).

    Google Scholar 

  48. J. M. Felix, P. Gatenholm, and H. P. Schreiber, “Controlled interactions in cellulose-polymer composites. I: Effect of mechanical properties,” Polym. Compos.,14, 449–457 (1993).

    Article  Google Scholar 

  49. I. Ulkem and H. P. Schreiber, “The role of interactions at interfaces of glass-fiber reinforced composites,” Compos. Interf.,2, 253–263 (1994).

    Google Scholar 

  50. M. Fafard, M. El-Kindi, H. P. Schreiber, G. Dipaola-Baranyi, and A. M. Hor, “Estimating surface energy variations of solids by inverse gas chromatography,” J. Adhes. Sci. Technol.,8, 1383–1394 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 4, pp. 431–446, July–August, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutschk, V., Pisanova, E., Zhandarov, S. et al. “Fundamental” and “practical” adhesion in polymer-fiber systems. Mech Compos Mater 34, 309–320 (1998). https://doi.org/10.1007/BF02257899

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02257899

Keywords

Navigation