Skip to main content
Log in

Control of biopolymer poly-β-hydroxybutyrate characteristics by γ-irradiation

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

The influence of γ-irradiation on the structure and some mechanical properties of poly-β-hydroxybutyrate was studied. Specimens of PHB were γ-irradiated with various doses (1–20 Mrad) in air and vacuum. The molecular weight, structural characteristics of the crystalline and amorphous phases, characteristics of thermal degradation, and deformation of the polymer were determined. The crystallinity was found to increase with increase in the radiation dose and with the corresponding reduction in molecular weight. The increase of crystallinity was the greater the smaller the length of macromolecules (higher radiation dose). The melting temperature T m , which characterizes the crystalline order, decreased with decrease in the molecular weight. The results of calorimetric studies suggest that radiation-caused degradation, which occurs at a temperature at which “cold” crystallization (60°C) is possible, might also affect the crystalline part of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. L. Griffin, Chemistry and Technology of Biodegradable Polymers, Chapman & Hall, Glasgow (1994).

    Google Scholar 

  2. E. M. Stegantseva, L. Savenkova, and Y. H. Park, “Effects of nitrogen and oxygen supply on production of poly-β-hydroxybutyrate inAzotobacter chroococcum,” J. Microbiol. Biotechnol.,5, No. 2, 100–104 (1995).

    Google Scholar 

  3. W. Babel, V. Riis, E. Hainich, “Mikrobielle Thermoplaste: Biosynthese, Eigenschaften und Anwendung,” Plaste und Kautschuck,37, No. 4, 109–115 (1990).

    CAS  Google Scholar 

  4. R. Langer, L. G. Cima, J. A. Tamada, and E. Wintermantel, “Future directions in biomaterials,” Biomater.,11, November 738–745 (1990).

    Article  CAS  Google Scholar 

  5. E. Piskin, “Biodegradable polymers as biomaterials,” Rev. J. Biomater. Sci., Polymer Ed.,6, No. 9, 775–795 (1994).

    Article  Google Scholar 

  6. D. Jendrossek, A. Schirmer, and H. G. Schlegel, “Biodegradation of polyhydroxyalkanoic acids,” Appl. Microbiol. Biotechnol.,46, 451–463 (1996).

    Article  PubMed  CAS  Google Scholar 

  7. F. D. Kopinke, M. Remmler, and K. Mackenzie, “Thermal decomposition of biodegradable polyesters. I: Poly(β-hydroxybutyric acid),” Polym. Degrad. Stabil.,52, 25–38 (1996).

    Article  CAS  Google Scholar 

  8. Y. Doi, Y. Kanesawa, Y. Kawaguchi, and M. Kunioka, “Hydrolytic degradation of microbial poly(hydroxyalkanoates),” Makromol. Chem., Rapid Commun.,10, 227–230 (1989).

    Article  CAS  Google Scholar 

  9. C. Collett, M. Buggy, and G. G. Henn, “Irradiation of poly-D,L-lactide,” Polym. Degrad. Stabil.,38, 249–253 (1992).

    Article  Google Scholar 

  10. N. D. Miller and D. F. Williams, “On the biodegradation of poly-β-hydroxybutyrate (PHB) homopolymer and poly-β-hydroxybutyrate-hydroxyvalerate copolymers,” Biomater.,8, 129–137 (May, 1987).

    Article  CAS  Google Scholar 

  11. M. Spenlehauer, M. Vert, J. P. Benoit, and A. Boddaert, “In vitro and in vivo degradation of poly(D,L lactide/glycolide) type microspheres made by solvent evaporation method,” Biomater.,10, 551–563 (October, 1989).

    Article  Google Scholar 

  12. D. Hutmacher, M. B. Hurzeler, and A. Kirsch, “The effects of gamma and ethylene oxide sterilization on different bioresorbable polymers” in: 5th World Biomater. Congr., Toronto, Canada (1996).

  13. P. J. Barham and H. H. Keller, “The relationship between microstructure and mode of fracture in polyhydroxybutyrate,” J. Polym. Sci.: Polym. Phys. Ed.,24, 69–77 (1986).

    Article  CAS  Google Scholar 

  14. P. J. Barham, H. H. Keller, J. Martinez-Salazar, and M. Sanchez-Cuesta, “Thermal expansion and spherulite cracking in 3-hydroxybutyrate/3-hydroxyvalerate copolymers,” J. Mater. Sci. Lett.,8, 490–492 (1989).

    Article  Google Scholar 

  15. F. Biddlestone, A. Harris, J. N. Hay, and T. Hammond, “The physical ageing of amorphous poly(hydroxybyrate),” Polym. Int.,39, 221–229 (1996).

    Article  CAS  Google Scholar 

  16. S. Bruckner, S. V. Meille, and L. Malpezzi, “The structure of poly(D-(−)-β-hydroxybutyrate). A refinement based on the Rietveld method,” Macromolecules,21, No. 4, 967–972 (1988).

    Article  CAS  Google Scholar 

  17. R. Pearce and R. H. Marchessault, “Multiple melting in blends of isotactic and atactic poly(β-hydroxybutyrate),” Polymer,35, No. 18, 3990–3997 (1994).

    Article  CAS  Google Scholar 

  18. J. H. O'Donnell and C. A. Smith, “Evaluation of radiation chemical yields from the reciprocal relationship between irradiation dose and weight-average molecular weight,” J. Polym. Sci.: Polym. Phys. Ed.,16, 1515–1518 (1978).

    Article  Google Scholar 

  19. J. H. O'Donnell, C. W. Frank, and E. Reichmanis, Irradiation of Polymeric Materials, Amer. Chem. Soc., Washington (1993).

    Google Scholar 

  20. V. S. Ivanov, Radiation Chemistry of Polymers [in Russian], Khimiya, Leningrad (1988).

    Google Scholar 

Download references

Authors

Additional information

Institute of Polymer Materials, Riga Technical University, Riga, LV-1048, Latvia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 2, pp. 239–252, March–April, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bibers, I., Kalnins, M. Control of biopolymer poly-β-hydroxybutyrate characteristics by γ-irradiation. Mech Compos Mater 35, 169–178 (1999). https://doi.org/10.1007/BF02257247

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02257247

Keywords

Navigation