Skip to main content
Log in

Electron-beam radiation effects on the structure and properties of polypropylene at low dose rates

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

While the high-energy radiation effects on polypropylene, which are crucial for the cable industry for nuclear power plants, have been thoroughly studied, the property changes of PP at low-dose-rate electron-beam irradiation are far from elucidated. Herein, the influence of electron-beam irradiation on the structure and properties of PP was examined. The static EB irradiation conditions were 1.2 MeV at a low dose rate of 20 kGy/h to achieve absorbed doses ranging from 45, to 60, 100, and 200 kGy. The molecular structure was first evaluated by measuring the carboxyl index and the relative radical concentrations via Fourier transform infrared spectroscopy and electron spin resonance, respectively. Mechanical, differential scanning colorimetric, and rheological tests were carried out to further investigate the changes in the properties (tensile, crystalizing, and viscoelastic properties) of irradiated PP, which showed good agreement with the structural analysis results. We found that radio-oxidative degradation (chain scission) was predominant, which can be due to the low dose rate facilitating oxygen diffusion into the PP matrix during electron-beam irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.T. Gillen, M. Celina, R.L. Clough, Density measurements as a condition monitoring approach for following the aging of nuclear power plant cable materials. Radiat. Phys. Chem. 56, 429–447 (1999). https://doi.org/10.1016/S0969-806X(99)00333-3

    Article  Google Scholar 

  2. K.T. Gillen, R.L. Clough, G. Ganouna-Cohen et al., The importance of oxygen in LOCA simulation tests. Nucl. Eng. Des. 74, 271–285 (1982). https://doi.org/10.1016/0029-5493(83)90065-1

    Article  Google Scholar 

  3. J. Wise, K.T. Gillen, M. Celina et al., Time development of diffusion-limited oxidation profiles in a radiation environment. Radiat. Phys. Chem. 49, 565–573 (1997). https://doi.org/10.1016/S0969-806X(96)00185-5

    Article  Google Scholar 

  4. E. Suljovrujic, Post-irradiation effects in polyethylene irradiated under various atmosphere. Radiat. Phys. Chem. 89, 43–50 (2013). https://doi.org/10.1016/j.radphyschem.2013.04.003

    Article  Google Scholar 

  5. B. Katrin, K. Christian, H. Eric et al., The effects of e-beam crosslinking of LDPE on the permeation of hydrocarbons. J. Appl. Polym. Sci. 134(1–8), 44968 (2017). https://doi.org/10.1002/app.44968/full

    Google Scholar 

  6. M.S. Jahan, M.C. King, W.O. Haggard et al., A study of long-lived radicals in gamma-irradiated medical grade polyethylene. Radiat. Phys. Chem. 62, 141–144 (2001). https://doi.org/10.1016/S0969-806X(01)00431-5

    Article  Google Scholar 

  7. S. Dadbin, M. Frounchi, M.H. Saeid et al., Molecular structure and physical properties of e-beam crosslinked low-density polyethylene for wire and cable insulation applications. J. Appl. Polym. Sci. 86, 1959–1969 (2002). https://doi.org/10.1002/app.11111/full

    Article  Google Scholar 

  8. H.R. Víctor, K. Matthias, H.W. Manfred, Size exclusion chromatography of photo-oxidated LDPE by triple detection and its relation to rheological behavior. Polym. Degrad. Stab. 111, 46–54 (2015). https://doi.org/10.1016/j.polymdegradstab.2014.10.022

    Article  Google Scholar 

  9. E. Mehdi, A. Mahdi, A. Mostafa, Theoretical correlation of linear and non-linear rheological symptoms of long-chain branching in polyethylene irradiated by electron beam at relatively low doses. Rheo. Acta. 56, 729–742 (2017). https://doi.org/10.1007/s00397-017-1029-9

    Article  Google Scholar 

  10. A.E. Goulas, K.A. Riganakos, M.G. Kontominas, Effect of ionizing radiation on physicochemical and mechanical properties of commercial monolayer and multilayer semirigid plastic materials. Radiat. Phys. Chem. 69, 411–417 (2004). https://doi.org/10.1016/j.radphyschem.2003.08.013

    Article  Google Scholar 

  11. M.A. Lopez, G. Burillo, A. Charlesby, Studies on memory effect in polyethylene. Radiat. Phys. Chem. 43, 227–231 (1994). https://doi.org/10.1016/0969-806X(94)90183-X

    Article  Google Scholar 

  12. K. Damir, Š. Mario, B. Goran et al., Influence of high doses γ-irradiation on oxygen permeability of linear low-density polyethylene and cast polypropylene films. Radiat. Phys. Chem. 97, 304–312 (2014). https://doi.org/10.1016/j.radphyschem.2013.12.005

    Article  Google Scholar 

  13. R.P. Joshi, K. Hareesh, A. Bankar et al., Anti-biofilm efficacy of 100 MeV gold ion irradiated polycarbonate against salmonella typhi. Radiat. Phys. Chem. 141, 149–154 (2017). https://doi.org/10.1016/j.radphyschem.2017.07.002

    Article  Google Scholar 

  14. P. Dahal, Y.C. Kim, Preparation and characterization of modified polypropylene by using electron beam irradiation. J. Ind. Eng. Chem. 19, 1879–1883 (2013). https://doi.org/10.1016/j.jiec.2013.02.027

    Article  Google Scholar 

  15. D. Auhl, J. Stange, H. Münstedt et al., Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules 37, 9465–9472 (2004). https://doi.org/10.1021/ma030579w

    Article  Google Scholar 

  16. D. Wan, L. Ma, H.P. Xing et al., Preparation and characterization of long chain branched polypropylene mediated by different heteroaromatic ring derivatives. Polymer 54, 639–651 (2013). https://doi.org/10.1016/j.polymer.2012.12.014

    Article  Google Scholar 

  17. J. Guapacha, M.D. Failla, E.M. Vallés et al., Molecular, rheological, and thermal study of long-chain branched polypropylene obtained by esterification of anhydride grafted polypropylene. J. Appl. Polym. Sci. 131, 40357 (2014). https://doi.org/10.1002/app.40357/full

    Article  Google Scholar 

  18. H. Otaguro, L.F.C.P. Lima, D.F. Parra et al., High-energy radiation forming chain scission and branching in polypropylene. Radiat. Phys. Chem. 79, 318–324 (2010). https://doi.org/10.1016/j.radphyschem.2009.11.003

    Article  Google Scholar 

  19. A.T. Fintzou, M.G. Kontominas, A.V. Badeka et al., Effect of electron-beam and gamma-irradiation on physicochemical and mechanical properties of polypropylene syringes as a function of irradiation dose: Study under vacuum. Radiat. Phys. Chem. 76, 1147–1155 (2007). https://doi.org/10.1016/j.radphyschem.2006.11.009

    Article  Google Scholar 

  20. B. Bartoníček, V. Plaček, V. Hnát, Comparison of degradation effects induced by gamma radiation and electron beam radiation in two cable jacketing materials. Radiat. Phys. Chem. 76, 857–863 (2007). https://doi.org/10.1016/j.radphyschem.2006.05.011

    Article  Google Scholar 

  21. A.C. Abraham, M.A. Czayka, M.R. Fisch, Electron beam irradiations of polypropylene syring barrels and the resulting ohysical and chemical property changes. Radiat. Phys. Chem. 79, 83–92 (2010). https://doi.org/10.1016/j.radphyschem.2009.08.027

    Article  Google Scholar 

  22. F. Ardakani, Y. Jahani, J. Morshedian, The role of PB-1 on the long chain branching of PP by electron beam irradiation in solid state and melt viscoelastic behavior. Radiat. Phys. Chem. 87, 64–70 (2013). https://doi.org/10.1016/j.radphyschem.2013.02.021

    Article  Google Scholar 

  23. R. Tobias, M. Dieter, F. Christian et al., Determination of the relaxation time spectrum from dynamic moduli using an edge preserving regulation method. Rheol. Acta 39, 163–173 (2000). https://doi.org/10.1007/s003970050016

    Article  Google Scholar 

  24. C. Lang, A Laplace transform method for molecular mass distribution calculation from rheometric data. J. Rheol. 61, 947–954 (2017). https://doi.org/10.1122/1.4995602

    Article  Google Scholar 

  25. J. Reuben, B.H. Mahlman, The fate of peroxy radicals in irradiated polypropylene. An ESR investigation with oxygen-17 labeling. J. Phys. Chem. 88, 4904–4906 (1984). https://doi.org/10.1021/j150665a021

    Article  Google Scholar 

  26. D.M. Mowery, R.A. Assink, D.K. Derzon et al., Solid-state 13C NMR investigation of the oxidative degradation of selectively labeled polypropylene by thermal aging and gamma-irradiation. Macromolecules 28, 5035–5046 (2005). https://doi.org/10.1021/ma047381b

    Article  Google Scholar 

  27. U.A. Sevil, O. Güven, Spectroscopic, viscometric and mechanical characterization of γ-irradiated isotactic polypropylene syringes. Radiat. Phys. Chem. 46, 875–878 (1995). https://doi.org/10.1016/0969-806X(95)00282-3

    Article  Google Scholar 

  28. G. Khang, J.M. Rhee, J.K. Jeong et al., Local drug delivery system using biodegradable polymers. Macromol. Res. 11, 207–223 (2003). https://doi.org/10.1007/BF03218355

    Article  Google Scholar 

  29. A.T. Fintzou, A.V. Badeka, M.G. Kontominas et al., Changes in physicochemical properties of γ-irradiated polypropylene syringes as a function of irradiation dose. Radiat. Phys. Chem. 75, 87–97 (2006). https://doi.org/10.1016/j.radphyschem.2005.03.014

    Article  Google Scholar 

  30. T. Sawaguchi, T. Ikemura, M. Seno, Preparation of alpha., omega.-Diisopropenyloligopropylene by thermal degradation of isotactic polypropylene. Macromolecules 28, 7973–7978 (1995). https://doi.org/10.1021/ma00128a001

    Article  Google Scholar 

  31. K.A. Riganakos, W.D. Koller, D.A.E. Ehlermann et al., Effects of ionizing radiation on properties of manolayer and multilayer flexible food packaging materials. Radiat. Phys. Chem. 54, 527–540 (1999). https://doi.org/10.1016/S0969-806X(98)00263-1

    Article  Google Scholar 

  32. S. Chytiri, A.E. Goulas, K.A. Riganakos et al., Thermal, mechanical and permeation properties of gamma-irradiated multilayer food packaging films containing a buried layer of recycled low density polyethylene. Radiat. Phys. Chem. 75, 416–423 (2006). https://doi.org/10.1016/j.radphyschem.2005.07.005

    Article  Google Scholar 

  33. I. Krupa, A.S. Luyt, Thermal properties of isotactic propylene degraded with gamma radiation. Polym. Degrad. Stab. 72, 505–508 (2001). https://doi.org/10.1016/S0141-3910(01)00052-0

    Article  Google Scholar 

  34. N. Yagoubi, R. Peron, B. Legendre et al., Gamma and electron beam radiation induced physico-chemical modification of poly (propylene). Nucl. Instract. Method B 151, 247–254 (1999). https://doi.org/10.1016/S0168-583X(99)00157-3

    Article  Google Scholar 

  35. X.C. Zhang, M.F. Butler, R.E. Cameron, The ductile-brittle transition of irradiated isotactic polypropylene studied using simultaneous small angle X-ray scattering and tensile deformation. Polymer 41, 3797–3807 (2010). https://doi.org/10.1016/S0032-3861(99)00594-7

    Article  Google Scholar 

  36. S.A. Mousavi, S. Dadbin, M. Frounchi et al., Comparison of rheological behavior of branched polypropylene prepared by chemical modification and electron beam irradiation under air and N2. Radiat. Phys. Chem. 79, 1008–1094 (2010). https://doi.org/10.1016/j.radphyschem.2010.04.010

    Google Scholar 

  37. W.L. Oliani, D.F. Parra, D.M. Fermino et al., Study of gel formation by ionizing radiation in polypropylene. Radiat. Phys. Chem. 84, 20–25 (2013). https://doi.org/10.1016/j.radphyschem.2012.06.053

    Article  Google Scholar 

  38. A.J. Satti, J.A. Ressia, M.L. Cerrada et al., Rheological analysis of irradiated crosslinkable and scissionable polymers used for medical devices under different radiation conditions. Radiat. Phys. Chem. 144, 298–303 (2018). https://doi.org/10.1016/j.radphyschem.2017.09.002

    Article  Google Scholar 

  39. F. Zulli, L. Andreozzi, E. Passaglia et al., Rheology of long-chain branched polypropylene copolymers. J. Appl. Poly. Sci. 127, 1423–1432 (2013). https://doi.org/10.1002/app.38076/full

    Article  Google Scholar 

  40. B. Leila, K. Alireza, A.B. Mohammad et al., Correlation between viscoelastic behavior and morphology of nanocomposites based on SR/EPDM blends compatibilized by maleic anhydride. Polymer 113, 156–166 (2017). https://doi.org/10.1016/j.polymer.2017.02.057

    Article  Google Scholar 

  41. H. Víctor, G. Rolón, H.W. Manfred, Linear and non-linear rheological characterization of photo-oxidative degraded LDPE. Polym. Degrad. Stab. 99, 136–145 (2014). https://doi.org/10.1016/j.polymdegradstab.2013.11.014

    Article  Google Scholar 

  42. A.K. Murray, J.E. Kennedy, B. McEvoy et al., The effect of high energy electron beam irradiation in air on accelerated aging and on the structure property relationships of low density polyethylene. Nucl. Instrum. Methods B 297, 64–74 (2013). https://doi.org/10.1016/j.nimb.2012.12.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin-Fan Li or Jing-Ye Li.

Additional information

This work was supported by the “Strategic Priority Research Program” of the Chinese Academy of Science (No. XDA02040300) and the National Natural Science Foundation of China (No. 11575277).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HT., Jiang, HQ., Shen, RF. et al. Electron-beam radiation effects on the structure and properties of polypropylene at low dose rates. NUCL SCI TECH 29, 87 (2018). https://doi.org/10.1007/s41365-018-0424-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0424-y

Keywords

Navigation