Skip to main content
Log in

Effect of the cellular structure on thermal conductivity of rigid closed-cell foam polymers during long-term aging

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

The thermal conductivity of rigid closed-cell polyurethane foams during long-term aging has been studied. The similarity between the kinetics of changes in the physical and mechanical characteristics of PU foams on progressive aging is established, which is attributed to the effect of matrix destruction. It is found that rigid foams have cell walls of various strength, whose impact on the kinetics of changes in the physical characteristics of the foams during long-term aging is ascertained. The results of predicting the thermal conductivity of PU foams by the method of temperature-time analogy and establishing the limits of its application are discussed. The research presented is of interest both in determining the foam durability and in replacing freons by alternative, ecologically less harmful blowing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Dementyev and O. G. Tarakanov, Structure and Properties of Foam Plastics [in Russian], Khimiya, Moscow (1983).

    Google Scholar 

  2. G. C. J. Bart, G. M. R. du Cause Nazelle, de, “Certification of thermal conductivity aging of PUR foam,” in: Proc. Polyurethanes World Congr., Netherlands (1991), pp. 75–80.

  3. J. R. Shankland, “Blowing agent emission from insulation foams,” in: Proc. Polyurethane World Congr., Netherlands (1991) pp. 91–98.

  4. F. J. Norton, “Thermal conductivity and life of polymer foams,” J. Cell. Plast., 3, No. 1, 23–36 (1967).

    Article  CAS  Google Scholar 

  5. G. M. F. Jeffs and D. J. Sparrow, “Progress in the reduction and elimination of the use of CFC-s rigid polyurethane foam,” Cell. Polym.,9, No. 4, 253 (1990).

    CAS  Google Scholar 

  6. D. A. Brandreth and Ingersoll, “Acceleration aging of rigid polyurethane foam,” Europ. J. Cell. Plast.,3, 134 (1980).

    CAS  Google Scholar 

  7. A. G. Ostrogorsky and L. R. Glicksman, “Electrical analogy of gas diffusion in closed cell foams,” J. Cell. Plast.,24, No. 3, 215 (1988).

    Article  CAS  Google Scholar 

  8. G. Roux and G. Tramblay, “Prediction of the long-term insulation value of PUR foams. The ACERMI Method,” Cell. Polym.,9, No. 4, 278–293 (1990).

    CAS  Google Scholar 

  9. A. Cunningham and D. J. Sparrow, “Rigid polyurethane foam. What makes it the most effective insulant,” Cell. Polym.,5, No. 5, 327–347 (1986).

    CAS  Google Scholar 

  10. G. W. Ball, W. G. Healey, and J. B. Partington, “The thermal conductivity of isocyanate-based rigid cellular plastics. Performance in practice,” The Europ. J. Cell. Plast.,1, No. 1, 50–63 (1978).

    CAS  Google Scholar 

  11. Magdalena Svanstrőm and Olle Remnas, “Deformation of the blowing agent distribution in rigid polyurethane foam,” J. Cell. Plast.,32, No. 3, 159–171 (1996).

    Google Scholar 

  12. J. A. King, D. D. Latham, and J. C. Ackley, “Relationship ofk-factor versus density for various appliance foam formulations containing next generation blowing agents,” J. Cell. Plast.,32, No. 7, 355–366 (1996).

    CAS  Google Scholar 

  13. A. G. Dementyev, “Degradation of foamed plastics under hydrostatic pressure,” Mekh. Kompoz. Mater., No. 6, 1103–1105 (1980).

    Google Scholar 

  14. A. G. Dementyev, T. K. Khlystalova, A. I. Demina, and P. A. Zinger, “Structural-physical properties of polyurethane foams with different blowing agents,” Vysokomol. Soed.,33A, No. 10, 2257–2266 (1991).

    Google Scholar 

  15. A. A. Berlin and F. A. Shutov, Foamed Polymers Based on Reactive Oligomers [in Russian] Nauka, Moscow (1978).

    Google Scholar 

  16. O. G. Tarakanov, I. V. Shamov, A. G. Dementyev, and G. I. Kagan (eds.), Methodical Instructions on the Methods of Physicomechanical Tests, Moscow (1984).

  17. A. G. Dementyev, T. K. Khlystalova, and I. I. Mikheeva, “Diffusion and sorption of water vapors in foam polyurethane,” Vysokomol. Soed.,31A, No. 10, 2084–2088, (1989).

    Google Scholar 

  18. A. G. Dementyev, T. K. Khlystalova, and P. A. Zinger, “Diffusion of foaming agents and prediction of the characteristics of polyurethane foams during aging,” Mech. Compos. Mater.,29, No. 4, 418–423, (1993).

    Article  Google Scholar 

  19. A. G. Dementyev, “Determination of porosity of rigid foam plastics,” Plast. Massy, No. 3, 70–71 (1969).

    Google Scholar 

  20. A. G. Dementyev and P. I. Seliverstov, “Determination of strength of cell walls of foam plastics,” Zavod. Lab., No. 4, 498–499 (1975).

    Google Scholar 

  21. A. G. Dementyev, O. G. Tarakanov, E. A. Gurov, V. A. Orlov, M. I. Prigozhin, and I. M. Prusakova, “Simulation of prediction functions in aging of rigid polyurethane foams in ground,” Vysokomol. Soed.,29B, No. 10, 769–772 (1987).

    Google Scholar 

  22. K. I. Cirule and E. A. Putninsh, “An estimate of gas penetration and its connection with the microstructure of rigid polyurethane foams,” in: Proc. 6th All-Union Conf. Mech. Polym. Compos. Mater., Zinatne, Riga (1986).

    Google Scholar 

  23. I. B. Dorofeeva and O. G. Tarakanov, “Strength of chemical bonds in basic fragments of macromolecules of polyurethanes,” Vysokomol. Soed.,27A, No. 3, 617–622 (1985).

    Google Scholar 

  24. A. G. Dementyev, D. P. Mironov, O. G. Tarakanov, E. A. Gurov, E. V. Belova, and B. A. Kalinin, “Thermooxidative destruction of rigid polyurethane foam,” Vysokomol. Soed.,20A, No. 3, 603–607 (1978).

    Google Scholar 

  25. A. G. Dementyev, L. V. Nevskii, O. G. Tarakanov, and E. V. Belova, “Kinetics of thermooxidative destruction of polyurethane foams,” Zh. Prikl. Khim.,53, No. 11, 2447–2452 (1980).

    Google Scholar 

  26. A. G. Dementyev, “Deformation of elastic polyurethanes with a bimodal cellular structure,” Mech. Compos. Mater.,32, No. 3, 227–232 (1996).

    Article  Google Scholar 

  27. A. G. Dementyev, “Deformability and strength of foam plastics,” Mech. Compos. Mater., No. 2, 209–216 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 2, pp. 187–198, March–April, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dementyev, A.G., Dementyev, M.A., Zinger, P.A. et al. Effect of the cellular structure on thermal conductivity of rigid closed-cell foam polymers during long-term aging. Mech Compos Mater 35, 129–138 (1999). https://doi.org/10.1007/BF02257243

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02257243

Keywords

Navigation