Skip to main content

Advertisement

Log in

Performance and Efficiency of Polyurethane Foams under the Influence of Temperature and Strain Rate Variation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Polyurethane foams with lower and higher densities (35, 93, and 200 kg/m3) were tested in compression at three levels of temperatures as: − 60 °C (213 K), 23 °C (296 K), and 80 °C (353 K). The span of chosen temperatures covers the usual possible environmental conditions. In testing strain rate starts from 0.0014 up to 545 1/s. Based on a set of experimental engineering stress–strain curves a phenomenological model with two density and temperature-dependent material parameters is proposed. Thus, it is possible to reconstruct the stress–strain curves and establish the variation of energy efficiency and onset strain of densification together with the absorbed specific strain energy up to that moment. It is shown that contrary to what was expected, the temperature and speed of testing do not influence significantly the onset of densification. Low temperatures and high speeds of testing lead to the increase of absorbed specific strain energy for the higher PUR foam density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L.G. Gibson and M.F. Ashby, Cellular Solids, Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, 1997

    Book  Google Scholar 

  2. N.J. Mills, Polymer Foams Handbook, Butterworth-Heinemann, Oxford, 2007

    Google Scholar 

  3. M.F. Ashby, The Properties of Foams and Lattices, Philos. Trans. R. Soc. A, 2006, 364(364), p 15–30. https://doi.org/10.1098/rsta.2005.1678

    Article  CAS  Google Scholar 

  4. Q.M. Li, R.A.W. Mines, R.S. Birch, Combined Strain Rate and Temperature Effects on Compression Strength of Rohacell 51WF Structural Foam, in 3rd Asia Pacific Conference on Shock and Impact Loads on Structures, ed. by T.S. Lok, C.H. Lim, p. 221–226 (1999)

  5. Q.M. Li and R.A.W. Mines, Strain Measures for Rigid Crushable Foam in Uniaxial Compression, Strain, 2002, 38, p 132–140

    Article  Google Scholar 

  6. Q.M. Li, I. Magkiriadis, and J.J. Harrigan, Compressive Strain at the Onset of Densification of Cellular Solids, J. Cell. Plast., 2006, 42, p 371–392

    Article  CAS  Google Scholar 

  7. R.A.W. Mines, Strain Rate Effects in Crushable Structural Foams, Appl. Mech. Mater., 2007, 7–8, p 231–236

    Article  Google Scholar 

  8. J. Shen, G. Lu, and D. Ruan, Compressive Behaviour of Closed-Cell Aluminium Foams at High Strain Rates, Compos. Part B Eng., 2010, 41, p 678–685

    Article  Google Scholar 

  9. P. Viot, F. Beani, and J.-L. Lataillade, Polymeric Foam Behavior under Dynamic Compressive Loading, J. Mater. Sci., 2005, 40, p 5829–5837

    Article  CAS  Google Scholar 

  10. W. Chen, F. Lu, and N.A. Winfree, Dynamic Compressive Response of Polyurethane Foams of Various Densities, Exp. Mech., 2002, 42, p 65–73

    Article  CAS  Google Scholar 

  11. B. Song, W. Chen, T. Yanagita, and D.J. Frew, Temperature Effects on the Dynamic Compressive and Failure Behaviors of an Epoxy Syntactic Foam, Compos. Struct., 2005, 67, p 289–298

    Article  Google Scholar 

  12. S. Ouellet, D. Cronin, and M. Worswick, Compressive Response of Polymeric Foams under Quasi-static, Medium and High Strain Rate Conditions, Polym. Test., 2006, 25, p 731–743

    Article  CAS  Google Scholar 

  13. F. Saint-Michel, L. Chazeau, J.Y. Cavaille, and E. Chabert, Mechanical Properties of High Density Polyurethane Foams: I. Effect of the Density, Compos. Sci. Tech., 2006, 66, p 2700–2708

    Article  CAS  Google Scholar 

  14. M. Avalle, G. Belingardi, and A. Ibba, Mechanical Models of Cellular Solids: Parameters Identification from Experimental Tests, Int. J. Imp. Eng., 2007, 34, p 3–27

    Article  Google Scholar 

  15. N. Gupta and V.C. Shunmugasamy, High Strain Rate Compressive Response of Syntactic Foams: Trends in Mechanical Properties and Failure Mechanisms, Mater. Sci. Eng. A Struct., 2011, 528, p 7596–7605

    Article  CAS  Google Scholar 

  16. M. Stanzione, V. Russo, M. Oliviero, L. Verdolotti, A. Sorrentino, M. Di Serio, R. Tesser, S. Iannace, and M. Lavorgna, Synthesis and Characterization of Sustainable Polyurethane Foams Based on Polyhydroxyls with Different Terminal Groups, Polymer, 2018, 149, p 134–145

    Article  CAS  Google Scholar 

  17. W. Shilong, Z. Zhijun, Z. Changfeng, D. Yuanyuan, and Y. Jilin, Crushing and Densification of Rapid Prototyping Polylactide Foam: Meso-structural Effect and a Statistical Constitutive Model, Mech. Mater., 2018, 127, p 65–76

    Article  Google Scholar 

  18. X. Zhai, J. Gao, H. Liao, C.D. Kirk, Y.A. Balogun, and W.W. Chen, Mechanical Behaviors of Auxetic Polyurethane Foam at Quasi-Static, Intermediate and High Strain Rates, Int. J. Imp. Eng., 2019, 129, p 112–118

    Article  Google Scholar 

  19. K. Liu, W. Liang, F. Ren, J. Ren, F. Wang, and H. Ding, The Study on Compressive Mechanical Properties of Rigid Polyurethane Grout Materials with Different Densities, Constr. Build. Mater., 2019, 206, p 270–278

    Article  CAS  Google Scholar 

  20. C.M. Cady, G.T. Gray, C. Liu, M.L. Lovato, and T. Mukai, Compressive Properties of a Closed-Cell Aluminum Foam as a Function of Strain Rate and Temperature, MatER. Sci. Eng. A Struct., 2009, 525, p 1–6

    Article  Google Scholar 

  21. B. Song, W.-Y. Lu, C. Syn, and W. Chen, The Effects of Strain Rate, Density, and Temperature on the Mechanical Properties of Polymethylene Diisocyanate (PMDI)-BASED Rigid Polyurethane Foams during Compression, J. Mater. Sci., 2009, 44, p 351–357

    Article  CAS  Google Scholar 

  22. S. Arezzo, V.L. Tagarielli, C.R. Siviour, and N. Petrinic, Compressive Deformation of Rohacell Foams: Effects of Strain Rate and Temperature, Int. J. Imp. Eng., 2013, 51, p 50–57

    Article  Google Scholar 

  23. H. Zhao, I. Elnasri, and S. Abdennadher, An Experimental Study on the Behaviour under Impact Loading of Metallic Cellular Materials, Int. J. Mech. Sci., 2005, 47, p 757–774

    Article  Google Scholar 

  24. A. Nagy, W.L. Ko, and U.S. Lindholm, Mechanical Behaviour of Foamed Materials under Dynamic Compression, J. Cell. Plast., 1964, 10, p 127–134

    Article  Google Scholar 

  25. D.A. Apostol and D.M. Constantinescu, Influence of Speed of Testing and Temperature on the Behaviour of Polyurethane Foams, Rev. Roum. Sci., 2012, 57, p 27–61

    Google Scholar 

  26. D.A. Apostol and D.M. Constantinescu, Temperature and Speed of Testing Influence on the Densification and Recovery of Polyurethane Foams, Mech. Time Depend. Mater., 2013, 17, p 111–136

    Article  CAS  Google Scholar 

  27. K.C. Rusch, Load-Compression Behavior of Flexible Foams, J. Appl. Polym. Sci., 1969, 13, p 2297–2311

    Article  CAS  Google Scholar 

  28. K.C. Rusch, Energy-Absorbing Characteristics of Foamed Polymers, J. Appl. Polym. Sci., 1970, 14, p 1433–1447

    Article  CAS  Google Scholar 

  29. K.C. Rusch, Load-Compression Behavior of Brittle Foams, J. Appl. Polym. Sci., 1970, 14, p 1263–1273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Both authors are grateful to Professor Gerald Pinter for facilitating the use of the MTS testing machine at the Polymer Competence Centre Leoben (PCCL), Montanuniversität of Leoben, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Mihai Constantinescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constantinescu, D.M., Apostol, D.A. Performance and Efficiency of Polyurethane Foams under the Influence of Temperature and Strain Rate Variation. J. of Materi Eng and Perform 29, 3016–3029 (2020). https://doi.org/10.1007/s11665-020-04860-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04860-4

Keywords

Navigation