Chemistry of Heterocyclic Compounds

, Volume 35, Issue 8, pp 912–927 | Cite as

X-ray crystallographic study of three (N→B)-borinates prepared from 8-hydroxyquinoline and 2-hydroxypyridine

  • Herbert Höpfl
  • Victor Barba
  • Gabriela Vargas
  • Norberto Farfan
  • Rosa Santillan
  • Dolores Castillo


8-Hydroxyquinoline and 2-hydroxypyridine have been reacted with diphenylborinic acid or 9-BBN; the molecular structure of the resulting heterocycles has been studied by X-ray crystallography. A structural comparison of the so formed five- and six-membered heterocycles with similar complexes obtained from aliphatic amino alcohol and α-amino acid derivatives shows significant differences for the N→B, B−O and B−C bond lengths and some of the inner cycle bond angles. Other structural parameters discussed in this respect are the sum of bond lengths at the boron atom, the sum of bond angles in the heterocycle and the tetrahedral character of the boron atom. On the basis of these parameters a qualitative comparison of heterocycle stability is possible.


Bond Length Bond Angle Boron Atom Qualitative Comparison Structural Comparison 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Höpfl, N. Farfan, D. Castillo R. Santillan, R. Contreras, F. J. Martķnez-Martķnez, M. Galvan, R. Alvarez, L. Fernandez, S., Halut, and J.-C. Daran,J. Organomet. Chem.,544, 175 (1997).CrossRefGoogle Scholar
  2. 2.
    H. Höpfl, N. Farfan, D. Castillo, R. Santillan, A. Gutierrez, and J.-C. Daran,J. Organomet. Chem.,553, 221 (1998).CrossRefGoogle Scholar
  3. 3.
    N. Farfan, D. Castillo, P. Joseph-Nathan, R. Contreras, and L. v. Szentpaly,J. Chem. Soc., Perkin Trans II, 527 (1992).Google Scholar
  4. 4.
    N. Farfan and R. Contreras,J. Chem. Soc., Perkin Trans II., 1787 (1988).Google Scholar
  5. 5.
    H. Höpfl and N. Farfan,Can. J. Chem.,76, 1853 (1998).CrossRefGoogle Scholar
  6. 6.
    N. Farfan, D. Silva, and R. Santillan,Heteroatom Chem.,4, 533 (1993).CrossRefGoogle Scholar
  7. 7.
    J. Trujillo, H. Höpfl, D. Castillo, R. Santillan, and N. Farfan,J. Organomet. Chem.,571, 21 (1998).CrossRefGoogle Scholar
  8. 8.
    A. T. Balaban, I. Haiduc, H. Höpfl, N. Farfan, and R. Santillan,Main Group Met. Chem.,19, 385 (1996).Google Scholar
  9. 9.
    H. Höpfl, N. Perez-Hernandez, S. Rojas-Lķna, R. Santillan, and N. Farfan,Heteroatom Chem.,9, 359 (1998).CrossRefGoogle Scholar
  10. 10.
    H. Höpfl, M. Galvan, N. Farfan, and R. Santillan,J. Mol. Struct. (Theochem).,427, 1 (1998).CrossRefGoogle Scholar
  11. 11.
    H. Höpfl,J. Organomet. Chem., in press.Google Scholar
  12. 12.
    H. C. Brown and A. K. Gupta,J. Organomet. Chem.,341, 73 (1998).CrossRefGoogle Scholar
  13. 13.
    C. J. Strang, E. Henson, Y. Okamoto, M. A. Paz, and P. M. Gallop,Anal. Biochem.,178, 276 (1989).CrossRefPubMedGoogle Scholar
  14. 14.
    E. Vedejs, S. C. Fields, S. Lin, and M. R. Schrimpf,J. Org. Chem.,60, 3028 (1995).CrossRefGoogle Scholar
  15. 15.
    L. K. Mohler and A. W. Czarnik,J. Amer. Chem. Soc.,115, 7037 (1993).CrossRefGoogle Scholar
  16. 16.
    K. E. Claas and E. Hohaus,Fresenius Z. anal. Chem.,322, 343 (1985).CrossRefGoogle Scholar
  17. 17.
    E. Hohaus and K. Essendorf,Z. Naturforsch.,35B, 319 (1980).Google Scholar
  18. 18.
    E. Hohaus,Z. anorg. allg. Chem.,484, 41, (1982).CrossRefGoogle Scholar
  19. 19.
    R. Boese, R. Köster, and M. Yalpani,Chem. Ber.,118, 670 (1985).Google Scholar
  20. 20.
    H. Hartmann,J. prakt. Chem.,328, 755 (1986).CrossRefGoogle Scholar
  21. 21.
    A. M. Brouwer, N. A. C. Bakker, P. G. Wiernig, and J. W. Verhoeven,J. Chem. Soc., Chem. Comm., 1094 (1991).Google Scholar
  22. 22.
    Y. L. Chow, C. I. Johansson, and Z.-L. Lin,J. Phys. Chem.,100, 13381 (1996).CrossRefGoogle Scholar
  23. 23.
    T. O. Harju,J. Mol. Struct. (Theochem).,360, 135 (1996).CrossRefGoogle Scholar
  24. 24.
    T. O. Harju, J. E. Korppi-Tommola, A. H. Huizer, and C. A. G. O. Varma,J. Phys. Chem.,100, 3592 (1996).CrossRefGoogle Scholar
  25. 25.
    J. M. Halm,Tappi.,60, 90 (1977).Google Scholar
  26. 26.
    Halm J. M., Pat. 2,749,768 Ger. Offen.;C. A.,89, 110833u (1978).Google Scholar
  27. 27.
    Halm J. M., U. S. Pat. US4,123,268;C. A.,90, 95445u (1979).Google Scholar
  28. 28.
    R. Quintero, N. Farfan, H. Höpfl, and R. Santillan, unpublished work.Google Scholar
  29. 29.
    R. Neu,Z. anal. Chem.,142, 335 (1945).CrossRefGoogle Scholar
  30. 30.
    D. Thierig and F. Umland,Z. anal. Chem.,215, 24 (1966).CrossRefGoogle Scholar
  31. 31.
    E. Hohaus and F. Umland,Chem. Ber.,102, 4025 (1969).Google Scholar
  32. 32.
    E. Hohaus and W. Riepe,Z. Naturforsch.,28b, 440 (1973).Google Scholar
  33. 33.
    W. Kliegel and D. Nanninga,Chem. Ber.,116, 2616 (1983).Google Scholar
  34. 34.
    V. I. Grachek, G. R. Motolko, and S. F. Naumova,Vesti Akad. Navuk BSSR, Khim. Navuk., 52 (1990).Google Scholar
  35. 35.
    P. J. Bailey, G. Cousins, G. A. Snow, and A. J. White,Antimicrobial Agents and Chemotherapy.,17, 549 (1980).PubMedGoogle Scholar
  36. 36.
    Batel B. P., U. S. Pat. US5,348,948;C. A.,121, 295089b (1994).Google Scholar
  37. 37.
    C. P. Brock, personal communication.Google Scholar
  38. 38.
    S. J. Rettig and J. Trotter,Can. J. Chem.,51, 1288 (1973).Google Scholar
  39. 39.
    S. J. Rettig and J. Trotter,Can. J. Chem.,54, 3130 (1976).Google Scholar
  40. 40.
    M. Yalpani, R. Köster, R. Boese and M. Sulkowski,Chem. Ber.,122, 9 (1989).Google Scholar
  41. 41.
    J. B. Hendrickson,J. Amer. Chem. Soc.,83, 4537 (1961).CrossRefGoogle Scholar
  42. 42.
    W. J. Adams, H. J. Geise and L. S. Bartell,J. Amer. Chem. Soc.,92, 5013 (1970).CrossRefGoogle Scholar
  43. 43.
    D. Cremer,Israel J. Chem.,23, 72 (1983).Google Scholar
  44. 44.
    K. B. Wiberg, R. F. W. Bader, and C. D. H. Lau,J. Amer. Chem. Soc.,109, 985 (1987).CrossRefGoogle Scholar
  45. 45.
    J. A. Boatz, M. S. Gordon, and R. L. Hilderbrandt,J. Amer. Chem. Soc.,110, 352 (1988).CrossRefGoogle Scholar
  46. 46.
    W. Kliegel, S. J. Rettig, and J. Trotter,Can. J. Chem.,66, 1091 (1988).Google Scholar
  47. 47.
    H. Höpfl, M. Sanchez, V. Barba, N. Farfan, S. Rojas, and R. Santillan,Inorg. Chem.,37, 1679 (1998).CrossRefGoogle Scholar
  48. 48.
    W. Kliegel, H.-W. Motzkus, D. Nanninga, S. J. Rettig, and J. Trotter,Can. J. Chem.,64, 507 (1986).Google Scholar
  49. 49.
    I. A. Teslya, Z. A. Starikova, V. K. Trunov, T. N. Kukina, V. A. Dorokhov, and B. M. Mikhailov,Izv. Akad. Nauk SSSR, Ser. Khim., 2730 (1981).Google Scholar
  50. 50.
    S. J. Rettig and J. Trotter,Can. J. Chem.,61, 2334 (1983).Google Scholar
  51. 51.
    C. Orvig, S. J. Rettig, and J. Trotter,Can. J. Chem.,65, 590 (1987).Google Scholar
  52. 52.
    S. J. Rettig and J. Trotter,Can. J. Chem.,54, 1168 (1976).Google Scholar
  53. 53.
    A. Lang, H. Nöth, and M. Schmidt,Chem. Ber.,128, 751 (1995).Google Scholar
  54. 54.
    M. Yalpani, R. Köster, and R. Boese,Chem. Ber.,122, 19 (1989).Google Scholar
  55. 55.
    G. E. Herberich, A. Fischer, and D. Wiebelhaus,Organometallics.,15, 3106 (1996).CrossRefGoogle Scholar
  56. 56.
    H. Binder, W. Matheis, H.-J. Deiseroth, and H. Fu-Son,Z. Naturforsch.,38b, 554 (1983).Google Scholar
  57. 57.
    H. Binder, W. Matheis, G. Heckmann, H.-J. Deiseroth, and H. Fu-Son,Z. Naturforsch.,40b, 934 (1985).Google Scholar
  58. 58.
    G. N. Chremos, H. Weidmann, and H. K. Zimmerman,J. Org. Chem.,26, 1683 (1961).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • Herbert Höpfl
  • Victor Barba
  • Gabriela Vargas
  • Norberto Farfan
  • Rosa Santillan
  • Dolores Castillo

There are no affiliations available

Personalised recommendations