Skip to main content
Log in

Vitamin A deficiency and bone growth

I. Altered drift patterns

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

The drift patterns of the mandible, presphenoid, and femur were compared in calves fed graded levels (2 deficient, 2 control) of vitamin A for 16 weeks. In addition, gross measurements of endochondral growth were recorded. The results indicated that drift of deficient bones was altered because subperiosteal resorption failed and was often replaced by growth. On those periosteal surfaces where resorption was not required for normal modeling, little effect was found due to treatment. In light of the evidence that osteoclasts disappear from the periosteal surfaces during deficiency, it is suggested that vitamin A affects the ability of the periosteal progenitor cell to differentiate as an osteoclast.

Résumé

Une comparaison du remainiement osseux de la mandibule, du présphénoide et du fémur de veaux, recevant des quantités variables de vitamin A (2 doses carentielles et 2 doses de contrôle) pendant une durée de 16 semaines, a été réalisée. La croissance enchondrale a également été étudiée.

Les résultats indiquent une altération du remaniement des os carencés, liée à une déficience de la résorption sous-périostée, cette dernière étant souvent remplacée par de l'apposition. Le traitement eut peu ou pas d'effet au niveau des surfaces périostées, où le remaniement normal ne nécessite pas de résorption. Etant donné que les osteéoclastes ne sont plus visibles au niveau des surfaces périostées au cours de l'état de carence, il semble que la vitamine A soit susceptible d'agir sur la differenciation de la cellule ostéogénique périostée en ostéoclaste.

Zusammenfassung

Der Knochenumbau wurde in Unterkiefer, Präsphenoid und Femur von 4 Gruppen von Kälbern verglichen. Diese erhielten während einer Zeitspanne von 16 Wochen verschiedene Vitamin A-Mengen (2 Vitamin A-Mangel- und 2 Kontrollgruppen). Ferner wurde das endochondrale Wachstum grob gemessen. Die Resultate ergaben eine Veränderung des Umbaus von defizienten Knochen wegen der mangelhaften subperiostalen Resorption, die oft durch Wachstum ersetzt wurde. Jene periostalen Oberflächen, wo die Resorption für einen normalen Umbau nicht erforderlicht ist, wurden durch den Vitamin A-Mangel nur wenig beeinflußt. Die Tatsache, daß die Osteoklasten bei Vitamin A-Mangel von den periostalen Oberflächen verschwinden, läßt vermuten, daß Vitamin A die Fähigkeit der periostalen Stammzellen, sich zu Osteoklasten zu differenzieren, beeinflußt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bassett, C. A. L.: Biologic significance of piezoelectricity. Calc. Tiss. Res.1, 252–272 (1968).

    Article  Google Scholar 

  2. Blakemore, F., Ottaway, C. W., Sellers, K. C., Eden, E., Moore, T.: The effects of a diet deficient in vitamin A on the development of the skull, optic nerves and brain of cattle. J. comp. Path.67, 277–288 (1957).

    PubMed  Google Scholar 

  3. Calhoun, M. C., Hurt, H. D., Eaton, H. D., Rousseau, J. E., Jr., Hall, R. C., Jr.: Rates of formation and absorption of cerebrospinal fluid in bovine hypovitaminosis A. J. dairy Sci.50, 1486–1494 (1967).

    Google Scholar 

  4. Cousins, R. J., Eaton, H. D., Rousseau, J. E., Jr., Hall, R. C., Jr.: Biochemical constituents of the dura mater in vitamin A deficiency. J. Nutr.97, 409–418 (1969).

    PubMed  Google Scholar 

  5. Davis, T. E.: Bone resorption in hypovitaminosis A. Ph. D. Thesis, Cornell University, Ithaca, New York (1968).

    Google Scholar 

  6. Enlow, D. H.: Principles of bone remideling, p. 31–59. Springfield, Ill.: Charles C. Thomas 1963.

    Google Scholar 

  7. Frape, D. L., Allen, R. S., Speer, V. C., Hays, V. W., Catron, D. V.: Relationship of vitamin A to35S metabolism in the baby pig. J. Nutr.68, 189–201 (1959).

    PubMed  Google Scholar 

  8. Frost, H. M.: Preparation of thin undecalcified bone section by rapid manual method. Stain Technol.33, 273–277 (1958).

    PubMed  Google Scholar 

  9. —: The laws of bone structure, p. 20–31. Springfield, Ill.: Charles C. Thomas 1964.

    Google Scholar 

  10. Gallina, A. M., Helmboldt, C. F., Frier, H. T., Nielsen, S. W., Eaton, H. D.: Bone growth in bovine hypovitaminosis A. J. Nutr.100, 129–142 (1970).

    PubMed  Google Scholar 

  11. Grey, R. M., Nielsen, S. W., Rousseau, J. E., Jr., Calhoun, M. C., Eaton, H. D.: Pathologie of skull, radius and rib in hypervitaminosis a of young calves. Path. Vet.2, 446–476 (1965).

    Google Scholar 

  12. Havivi, E., Wolf, G.: Vitamin A, sulfation and bone growth in the chick. J. Nutr.92, 467–473 (1967).

    PubMed  Google Scholar 

  13. Hayes, K. C., Nielsen, S. W., Eaton, H. D.: Pathogenesis of the optic nerve lesion in vitamin A-deficient calves. Arch. Ophthal.80, 777–787 (1968).

    PubMed  Google Scholar 

  14. Hayes, K. C.: Comments on vitamin A, differentiation, and reproduction. In: International Symposium on the Metabolic Function of vitamin A (G. Wolf, ed.). Amer. J. clin. Nutr.22, 1081–1084 (1969).

  15. —, McCombs, H. L., Faherty, T. P.: The fine structure of vitamin A deficiency. I. Parotid duct metaplasia. Lab. Invest.22, 81–89 (1970).

    PubMed  Google Scholar 

  16. Howell, J. McC., Thompson, J. N.: Lesions associated with the development of ataxia in vitamin A-deficient chicks. Brit. J. Nutr.21, 741–750 (1967).

    Article  PubMed  Google Scholar 

  17. Irving, J. T.: The effects of avitaminosis and hypervitaminosis A upon the incisor teeth and incisal alveolar bone of rats. J. Physiol. (Lond.)108, 92–101 (1949).

    Google Scholar 

  18. —: Frühe histologische Veränderungen in der Knochenformation bei Vitamin A-Mangel. Med. Klin.16, 690–693 (1956).

    Google Scholar 

  19. Mellanby, E.: A story of nutritional research. p. 74–203. Baltimore: Williams and Wilkins Co. 1950.

    Google Scholar 

  20. Moore, L. A., Huffman, C. F., Duncan, C. W.: Blindness in cattle associated with a constriction of the optic nerve and probably of nutritional origin. J. Nutr.9, 533–551 (1935).

    Google Scholar 

  21. Pease, C. N.: Focal retardation and arrestment of growth of bones due to vitamin A intoxication. J. Amer. med. Ass.182, 980–985 (1962).

    Google Scholar 

  22. Schour, I., Hoffman, M. M., Smith, M. C.: Changes in the incisor teeth of albino rats with vitamin A deficiency and the effects of replacement therapy. Amer. J. Path.17, 529–562 (1941).

    Google Scholar 

  23. Villaneuva, A. R., Hattner, R. S., Frost, H. M.: A tetrachrome stain for fresh, mineralized bone sections, useful in the diagnosis of bone diseases. Stain Technol.39, 87–94 (1964).

    PubMed  Google Scholar 

  24. Wolbach, S. B.: Effects of vitamin A deficiency and hypervitaminosis A in animals. In: The vitamins, vol. 1, p. 119 (W. H. Sebrell, Jr., and R. S. Harris, eds.), New York and London: Academic Press 1954.

    Google Scholar 

  25. —, Bessey, O. A.: Tissue changes in vitamin deficiencies. Physiol. Rev.22, 233–289 (1942).

    Google Scholar 

  26. Wolke, R. E., Nielsen, S. W., Rousseau, J. E., Jr.: Bone lesions of hypervitaminosis A in the pig. Amer. J. vet. Res.29, 1009–1024 (1968).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These studies were supported by U.S. National Institutes of Health Grants GM-1199 and NB-02108.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayes, K.C., Cousins, R.J. Vitamin A deficiency and bone growth. Calc. Tis Res. 6, 120–132 (1970). https://doi.org/10.1007/BF02196191

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02196191

Key words

Navigation