Skip to main content

Nutrition and Bone Health During Skeletal Modeling and Bone Consolidation of Childhood and Adolescence

  • Chapter
  • First Online:
Nutrition and Bone Health

Part of the book series: Nutrition and Health ((NH))

  • 3041 Accesses

Abstract

Bone accretion during childhood is proportional to the rate of growth. During this age interval height velocity is relatively slow for both boys and girls. As a direct consequence of this, retention of calcium in the body of an average child is lower than the calcium retention in an adolescent. Bone size, bone mass, and bone mineral density of the regional skeletal sites increase on average by about 4 %/year from childhood to late adolescence and young adulthood when most of the bone mass will be accumulated. Calcium needs are greater during adolescence (pubertal growth spurt) than in either childhood or adulthood. According to calcium balance studies the threshold intake for adolescents is about 1,500 mg/day. Inadequate calcium intake during growth may increase the risk of childhood fractures and predispose certain individuals to a lower peak bone mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matkovic V, Fontana D, Tominac C, Goel P, Chesnut CH. Factors which influence peak bone mass formation: a study of calcium balance and the inheritance of bone mass in adolescent females. Am J Clin Nutr. 1990;52:878–88.

    CAS  PubMed  Google Scholar 

  2. Matkovic V, Kostial K, Simonovic I, Buzina R, Brodarec A, Nordin BEC. Bone status and fracture rates in two regions of Yugoslavia. Am J Clin Nutr. 1979;32:540–9.

    CAS  PubMed  Google Scholar 

  3. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C. Peak bone mass. Osteoporos Int. 2000;11:985–1009.

    Article  CAS  PubMed  Google Scholar 

  4. Widdowson EM. Growth and body composition in childhood. In: Brunser O, Carrazza F, Gracey M, Nichols B, Senterre J, editors. Clinical nutrition of the young child. New York, NY: Raven; 1985. p. 1–21.

    Google Scholar 

  5. U.S. Department of Health and Human Services, Public Health Service. Healthy people, 2000. National health promotion and disease prevention objectives. Boston, MA: Jones and Bartlett; 1992. p. 1–153.

    Google Scholar 

  6. Heaney RP, Matkovic V. Inadequate peak bone mass. In: Riggs BL, Melton LJ, editors. Osteoporosis: etiology, diagnosis and management. 2nd ed. Philadelphia, PA: Lippincott-Raven Publishers; 1995. p. 115–31.

    Google Scholar 

  7. Hu JF, Zhao XH, Jia JB, Parpia B, Campbell TC. Dietary calcium and bone density among middle-aged and elderly women in China. Am J Clin Nutr. 1993;58:219–27.

    CAS  PubMed  Google Scholar 

  8. Sandler RB, Slemenda C, LaPorte RE, Cauley JA, Schramm MM, Baresi M, Kriska AM. Postmenopausal bone density and milk consumption in childhood and adolescence. Am J Clin Nutr. 1985;42:270–4.

    CAS  PubMed  Google Scholar 

  9. Glastre C, Braillon P, David L, Cochat P, Meunier PJ, Delmas PD. Measurement of bone mineral content of the lumbar spine by dual energy X-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab. 1990;70:1330–3.

    Article  CAS  PubMed  Google Scholar 

  10. Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991;73:555–63.

    Article  CAS  PubMed  Google Scholar 

  11. Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, Andon MB, Smith KT, Heaney RP. Timing of peak bone mass in caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest. 1994;93:799–808.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Recker RR, Davies KM, Hinders SM, Heaney RP, Stegman MR, Kimmel DB. Bone gain in young adult women. JAMA. 1992;268:2403–8.

    Article  CAS  PubMed  Google Scholar 

  13. Matkovic V. Calcium metabolism and calcium requirements during skeletal modeling and consolidation of bone mass. Am J Clin Nutr. 1991;54:245S–60.

    CAS  PubMed  Google Scholar 

  14. Matkovic V, Heaney RP. Calcium balance during human growth: evidence for threshold behavior. Am J Clin Nutr. 1992;55:992–6.

    CAS  PubMed  Google Scholar 

  15. Pettifor JM, Ross FP, Moodley G, DeLuca HF, Travers R, Glorieux FH. Calcium deficiency rickets associated with elevated 1,25-dihydroxyvitamin D concentrations in a rural black population. In: Norman AW, Schaefer K, Herrath DV, Grigoleit H-G, Coburn JW, DeLuca HF, Mawer EB, Suda T, editors. Vitamin D, basic research and its clinical application. New York, NY: Walter de Gruyter & Company; 1979. p. 1125–7.

    Google Scholar 

  16. Thacher TD, Fischer PR, Pettifor JM, Lawson JO, Isichei CO, Reading JC, Chan GM. A comparison of calcium, vitamin D, or both for nutritional rickets in Nigerian children. New Engl J Med. 1999;341:563–8.

    Article  CAS  PubMed  Google Scholar 

  17. Chan GM, Hess M, Hollis J, Book LS. Bone mineral status in childhood accident fractures. Am J Dis Child. 1984;139:569–70.

    Google Scholar 

  18. Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ. Bone mineral density in girls with forearm fractures. J Bone Miner Res. 1998;13:143–8.

    Article  CAS  PubMed  Google Scholar 

  19. Begum A, Pereira SM. Calcium balance studies on children accustomed to low calcium intakes. Br J Nutr. 1969;23:905–11.

    Article  CAS  PubMed  Google Scholar 

  20. Fleming KH, Heimbach JT. Consumption of calcium in the U.S.: food sources and intake levels. J Nutr. 1994;124:1426S–30.

    CAS  PubMed  Google Scholar 

  21. Food and Nutrition Board, Institute of Medicine. Dietary reference intakes. Washington, DC: National Academy Press; 1997.

    Google Scholar 

  22. Ilich JZ, Skugor M, Hangartner T, Baoshe A, Matkovic V. Relation of nutrition, body composition, and physical activity to skeletal development: a cross-sectional study in preadolescent females. J Am Coll Nutr. 1998;17:136–47.

    Article  CAS  PubMed  Google Scholar 

  23. Matkovic V, Landoll JD, Badenhop-Stevens NE, Ha EJ, Crncevic-Orlic Z, Li B, Goel P. Nutrition influences skeletal development from childhood to adulthood: a study of hip, spine, and forearm in adolescent females. J Nutr. 2004;134:701S–5.

    PubMed  Google Scholar 

  24. Black RE, Williams SM, Jones IE, Goulding A. Children who avoid drinking cow milk have low dietary intakes and poor bone health. Am J Clin Nutr. 2002;76:675–80.

    CAS  PubMed  Google Scholar 

  25. Orr JB. Milk consumption and the growth of school children. Lancet. 1928;1:202–3.

    Article  Google Scholar 

  26. Nordin BEC. Nutritional consideration. In: Nordin BEC, editor. Calcium, phosphate and magnesium metabolism. Edinburgh: Churchill Livingstone; 1976. p. 1–35.

    Google Scholar 

  27. Prentice A, Stear SJ, Ginty F, Jones SC, Mills L, Cole TJ. Calcium supplementation increases height and bone mass of 16-18 year old boys. J Bone Min Res. 2002;17:S397.

    Google Scholar 

  28. Dibba B, Prentice A, Ceesay M, Stirling DM, Cole TJ, Poskitt EME. Effect of calcium supplementation on bone mineral accretion in Gambian children accustomed to a low-calcium diet. Am J Clin Nutr. 2000;71:544–9.

    CAS  PubMed  Google Scholar 

  29. Moll GW, Rosenfield RL, Fang VS. Administration of low dose estrogen rapidly and directly stimulates growth hormone production. Am J Dis Child. 1986;140:124–7.

    PubMed  Google Scholar 

  30. Ross JL, Cassorla FG, Skerda MC, Valk IG, Loriaux L, Culter GB. A preliminary study of the effect of estrogen dose on growth in Turner’s syndrome. New Engl J Med. 1983;309:1104.

    Article  CAS  PubMed  Google Scholar 

  31. Garn SM. The earlier gain and the later loss of cortical bone. Springfield, IL: Charles C. Thomas; 1970.

    Google Scholar 

  32. Matkovic V, Goel PK, Badenhop-Stevens NE, Landoll JD, Li B, Ilich-Ernst JZ, Skugor M, Nagode LA, Mobley LS, Ha EJ, Hangartner TN, Clairmont A. Effects of calcium supplementation on bone mineral density of young females from childhood to young adulthood: a randomized clinical trial. Am J Clin Nutr. 2005;81:175–88.

    CAS  PubMed  Google Scholar 

  33. Alffram PA, Bauer GCH. Epidemiology of fractures of the forearm. J Bone Joint Surg. 1962;44A:105–14.

    Google Scholar 

  34. Bailey DA, Wedge JH, McCulloch RG, Martin AD, Bernhardson SC. Epidemiology of fractures of the distal end of the radius in children as associated with growth. J Bone Joint Surg. 1989;71-A(8):1225–31.

    Google Scholar 

  35. Matkovic V, Ciganovic M, Tominac C, Kostial K. Osteoporosis and epidemiology of fractures in Croatia. An international comparison. Henry Ford Hosp Med J. 1980;28:116–26.

    CAS  PubMed  Google Scholar 

  36. Rigotti NA, Nussbaum SR, Herzog DB, Neer RM. Osteoporosis in women with anorexia nervosa. New Engl J Med. 1984;311:1601–6.

    Article  CAS  PubMed  Google Scholar 

  37. Matkovic V, Ilich JZ, Skugor M, Badenhop NE, Clairmont A, Goel P, Klisovic D, Nasseh RW, Landoll JD. Leptin is inversely related to age at menarche in human females. J Clin Endo Metab. 1997;82:3239–45.

    CAS  Google Scholar 

  38. Matkovic V, Ilich JZ. Calcium requirements during growth. Are the current standards adequate? Nutr Rev. 1993;51:171–80.

    Article  CAS  PubMed  Google Scholar 

  39. Charles P, Taagehoj Jensen F, Mosekilde L, Hvid HH. Calcium metabolism evaluated by 47Ca kinetics: estimation of dermal calcium loss. Clin Sci. 1983;65:415–22.

    CAS  PubMed  Google Scholar 

  40. Klesges RC, Ward KD, Shelton ML, Applegate WB, Cantler ED, Palmieri GMA, Harmon K, Davis J. Changes in bone mineral content in male athletes. Mechanisms of action and intervention effects. JAMA. 1996;276:226–30.

    Article  CAS  PubMed  Google Scholar 

  41. Ilich JZ, Badenhop NE, Jelic T, Clairmont AC, Nagode LA, Matkovic V. Calcitriol and bone mass accumulation in females during puberty. Calcif Tissue Int. 1997;61:104–9.

    Article  CAS  PubMed  Google Scholar 

  42. Weaver CM, Martin BR, Plawecki KL. Differences in calcium metabolism between adolescent and adult females. Am J Clin Nutr. 1995;61:577–81.

    CAS  PubMed  Google Scholar 

  43. Matkovic V, Ilich JZ, Andon MB, Hsieh LC, Tzagournis MA, Lagger BJ, Goel PK. Urinary calcium, sodium, and bone mass of young females. Am J Clin Nutr. 1995;62:417–25.

    CAS  PubMed  Google Scholar 

  44. FAO/WHO Expert Consultation, Bangkok, Thailand, 1998. Calcium. In: Vitamin and mineral requirements in human nutrition. 2nd ed. Geneva: WHO and FAO of the United Nations; 2004. p. 59–93.

    Google Scholar 

  45. FAO/WHO Expert Group, Rome, Italy. Calcium requirements. Geneva: WHO and FAO of the United Nations; 1962.

    Google Scholar 

  46. Verd Vellespir S, Dominguez Sanches J, Gonzales Quintial M, Vidal Mas M, Soler Mariano AC, Company De Roque C, Marcos Sevilla JM. Asociacion entre el contenido en calcio de las aguas de consumo y las fracturas en los ninos. An Esp Pediatr. 1992;37:461–5.

    Google Scholar 

  47. Johnston Jr CC, Miller JZ, Slemenda CW, Reister TK, Hui S, Christian JC, Peacock M. Calcium supplementation and increases in bone mineral density in children. New Engl J Med. 1992;327:82–7.

    Article  PubMed  Google Scholar 

  48. Lloyd T, Andon MB, Rollings N, Martel JK, Landis RJ, Demers LM, Eggli DF, Kieselhorst K, Kulin HE. Calcium supplementation and bone mineral density in adolescent girls. JAMA. 1993;270:841–4.

    Article  CAS  PubMed  Google Scholar 

  49. Lee WTK, Leung SSF, Wang SF, Xu YC, Zeng WP, Lau J, Oppenheimer SJ, Cheng JCY. Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium diet. Am J Clin Nutr. 1994;60:744–50.

    CAS  PubMed  Google Scholar 

  50. Cadogan J, Eastell R, Jones N, Barker ME. Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ. 1997;315:1255–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Chan GM, Hoffman K, McMurray M. Effect of dairy products on bone and body composition in pubertal girls. J Pediatr. 1995;126:551–6.

    Article  CAS  PubMed  Google Scholar 

  52. Bonjour JP, Carrie AL, Ferrarri S, Clavien H, Slosman D, Theintz G, Rizzoli R. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest. 1997;99:1287–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Nowson CA, Green RM, Hopper JL, Sherwin AJ, Young D, Kaymakci B, Guest CS, Schmid M, Larkins RG, Wark JD. A co-twin study of the effect of calcium supplementation on bone density during adolescence. Osteoporos Int. 1997;7:219–25.

    Article  CAS  PubMed  Google Scholar 

  54. Merriles MJ, Smart EJ, Gilchrist NL, et al. Effects of dairy food supplements on bone mineral density in teenage girls. Eur J Nutr. 2000;39:256–62.

    Article  Google Scholar 

  55. Heaney RP. Interpreting trials of bone-active agents. Am J Med. 1995;98:329–30.

    Article  CAS  PubMed  Google Scholar 

  56. Slemenda C, Reister TK, Peacock M, Johnston Jr CC. Bone growth in children following the cessation of calcium supplementation. J Bone Miner Res. 1993;8:S154.

    Google Scholar 

  57. Lee WTK, Leung SSF, Leung DMY, Cheng JCY. A follow-up study on the effects of calcium-supplement withdrawal and puberty on bone acquisition of children. Am J Clin Nutr. 1996;64:71–7.

    CAS  PubMed  Google Scholar 

  58. Dibba B, Prentice A, Ceesay M, Mendy M, Darboe S, Stirling DM, Cole TJ, Poskitt EME. Bone mineral contents and plasma osteocalcin concentrations of Gambian children 12 and 24 mo after the withdrawal of a calcium supplement. Am J Clin Nutr. 2002;76:681–6.

    CAS  PubMed  Google Scholar 

  59. Matkovic V. Can osteoporosis be prevented? Bone mineralization during growth and development. In: Johnston FE, Zemel B, Eveleth PB, editors. Human growth in context. London, UK: Smith-Gordon; 183. p. 193–1999.

    Google Scholar 

  60. Matkovic V, Landoll JD, Badenhop-Stevens NE, Ha EJ, Crncevic-Orlic Z, Li B, Goel PK. Calcium supplementation and bone fragility fractures during growth a randomized controlled trial. Int Congr Ser. 2007;1297:60–5.

    Article  CAS  Google Scholar 

  61. Matkovic V, Badenhop NE, Ilich JZ. Trace element and mineral nutrition in healthy people: adolescents. In: Bogden JD, Klevay LM, editors. The clinical nutrition of the essential trace elements and minerals - the guide for health professionals. Totowa, NJ: Humana Press; 2000. p. 153–82.

    Chapter  Google Scholar 

  62. Heaney RP, Nordin BEC. Calcium effects on phosphorus absorption: implications for the prevention and co-therapy of osteoporosis. J Am Coll Nutr. 2002;21:239–44.

    Article  CAS  PubMed  Google Scholar 

  63. Garn SM, Rohmann CG, Behar M, Viteri F, Gozman M. Compact bone deficiency in protein-calorie malnutrition. Science. 1964;145:1444–5.

    Article  CAS  PubMed  Google Scholar 

  64. NIH Consensus Conference: optimal calcium intake. JAMA. 1994; 272:1942–8.

    Google Scholar 

  65. Ilich-Ernst JZ, McKenna AA, Badenhop NE, Clairmont AC, Andon MB, Nahhas RW, Goel P, Matkovic V. Iron status, menarche, and calcium supplementation in adolescent girls. Am J Clin Nutr. 1998;68:880.

    CAS  PubMed  Google Scholar 

  66. Andon MB, Ilich JZ, Tzagournis MA, Matkovic V. Magnesium balance in adolescent females consuming a low or high calcium diet. Am J Clin Nutr. 1996;63:950–3.

    CAS  PubMed  Google Scholar 

  67. McKenna AA, Ilich JZ, Andon MB, Wang C, Matkovic V. Zinc balance in adolescent females consuming a low- or high-calcium diet. Am J Clin Nutr. 1997;65:1460–4.

    CAS  PubMed  Google Scholar 

  68. Holben D, Smith AM, Ha EJ, Ilich JZ, Matkovic V. Selenium (Se) absorption, balance, and status in adolescent females throughout puberty. FASEB J. 1996;10:A532.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velimir Matkovic M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matkovic, V., Visy, D. (2015). Nutrition and Bone Health During Skeletal Modeling and Bone Consolidation of Childhood and Adolescence. In: Holick, M., Nieves, J. (eds) Nutrition and Bone Health. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2001-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2001-3_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2000-6

  • Online ISBN: 978-1-4939-2001-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics