Skip to main content
Log in

Transposon mutagenesis and cloning of the genes encoding the enzymes of fengycin biosynthesis inBacillus subtilis

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

A total of 20Bacillus subtilis F29-3 mutants defective in fengycin biosynthesis was obtained by Tn917 mutagenesis. Cloning and mapping results showed that the transposon in these mutants was inserted in eleven different locations on the chromosome. We were able to use the chromosomal sequence adjacent to the transposon as a probe to screen for cosmid clones containing the fengycin biosynthesis genes. One of the clones obtained, pFC660, was 46 kb long. Eight transposon insertion sites were mapped within this plasmid. Among the eleven different mutants analyzed, four mutants had Tn917 inserted in regions which encoded peptide sequences similar to part of gramicidin S synthetase, surfactin synthetase, and tyrocidine synthetase. Our results suggest that fengycin is synthesized nonribosomally by the multienzyme thiotemplate mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA inEscherichia coli. J Mol Biol 41:459–472

    Google Scholar 

  • Cohen SN, Chang ACY, Hsu L (1973) Nonchromosomal antibiotic resistance in bacteria: genetic transformation ofEscherichia coli by R factor DNA. Proc Natl Acad Sci USA 69:2110–2114

    Google Scholar 

  • Collins J, Hohn B (1979) Cosmids: a type of plasmid gene-cloning vector that is packageablein vitro in bacteriophage λ heads. Proc Natl Acad Sci USA 75:4242–4246

    Google Scholar 

  • Cosmina P, Rodriguez F, de Ferra F, Grandi G, Perego M, Venema G, van Sinderen D (1993) Sequence and analysis of the genetic locus responsible for surfactin synthesis inBacillus subtilis. Mol Microbiol 8:821–831

    Google Scholar 

  • Dedonder RA, Lepesant J-A, Lepesant-Kejzlarova J, Billault A, Steinmetz M, Kunst F (1977) Construction of a kit of reference strains for rapid genetic mapping inBacillus subtilis 168. Appl Environ Microbiol 33:989–993

    Google Scholar 

  • Dubnau D, Cirigliano C (1974) Genetics characterization of recombination-deficient mutants ofBacillus subtilis. J Bacteriol 117:488–493

    Google Scholar 

  • Fuma S, Fujishima Y, Corbell N, D'Souza C, Nakano MM, Zuber P, Yamane K (1993) Nucleotide sequence of 5′ portion ofsrfA that contains the region required for competence establishment inBacillus subtilis. Nucleic Acids Res 21:93–97

    Google Scholar 

  • Gornicki P, Scappino LA, Haselkorn R (1993) Genes for two subunits of acetyl coenzyme A carboxylase ofAnabaena sp. strain PCC 7120: biotin carboxylase and biotin carboxyl carrier protein. J Bacteriol 175:5268–5272

    Google Scholar 

  • Harder ME, Ladenson RC, Schimmel SD, Silbert DF (1974) Mutants ofEscherichia coli with temperature-sensitive malonyl coenzyme A-acyl carrier protein transacylase. J Biol Chem 349:7468–7475

    Google Scholar 

  • Imanaka T, Fujii M, Aiba S (1981) Isolation and characterization of antibiotic resistance plasmids from thermophilic bacilli and construction of deletion plasmids. J Bacteriol 146:1091–1097

    Google Scholar 

  • Imanaka T, Fujii M, Aramori I, Aiba S (1982) Transformation ofBacillus stearothermophilus with plasmid DNA and characterization of shuttle vector plasmids betweenBacillus stearothermophilus andBacillus subtilis. J Bacteriol 149:824–830

    Google Scholar 

  • Kado CI, Liu ST (1981) Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145:1365–1373

    Google Scholar 

  • Klein K, Steinberg R, Fiethen B, Overath P (1971) Fatty acid degradation inEscherichia coli. An inducible system for the uptake of fatty acids and further characterization ofold mutants Biochemistry 19:442–450

    Google Scholar 

  • Kleinkauf H, von Döhren H (1990) Nonribosomal biosynthesis of peptide antibiotics. Eur J Biochem 192:1–15

    Google Scholar 

  • Kondo H, Shiratsuchi K, Yoshimoto T, Masuda T, Kitazono A, Tsuru D, Anai M, Sekiguchi M, Tanabe T (1991) Acetyl-CoA carboxylase fromEscherichia coli: gene organization and nucleotide sequence of the biotin carboxylase subunit. Proc Natl Acad Sci USA 88:9730–9733

    Google Scholar 

  • Loefller W, Tschen JSM, Vanittanakom N, Kugler M, Knorpp E, Wu TG (1986) Antifungal effects of bacilysin and fengycin fromBacillus subtilis F29-3. A comparison with activities of otherBacillus antibiotics. J Phytopathol 115:204–213

    Google Scholar 

  • Matsubara Y, Indo Y, Naito E, Ozasa H, Glassberg R, Vockley J, Ikeda Y, Kraus J, Tanaka K (1989) Molecular cloning and nucleotide sequence of cDNAs encoding the precursors of rat long chain acyl-coenzyme A, short chain acyl-coenzyme A, and isovaleryl-coenzyme A dehydrogenases. J Biol Chem 264:16321–16331

    Google Scholar 

  • Menkhaus M, Ullrich C, Kluge B, Vater J, Vollenbroich D, Kamp RM (1993) Structural and functional organization of the surfactin synthetase multienzyme system. J Biol Chem 168:7678–7684

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Reed KC, Mann DA (1985) Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res. 13:7207–7221

    Google Scholar 

  • Perego M, Cole SP, Burbulys D, Trach K, Hoch JA (1989) Characterization of the gene for a protein kinase which phosphorylates the sporulation-regulatory proteins Spo0A and Spo0F ofBacillus subtilis. J Bacteriol 171:6187–6196

    Google Scholar 

  • Perry KL, Simonitch TA, Harrison-Lavoie KJ, Liu S-T (1986) Cloning and regulation ofErwinia herbicola pigment genes. J Bacteriol 168:607–612

    Google Scholar 

  • Piggot PJ (1973) Mapping of asporogenous mutations ofBacillus subtilis: a minimum estimate of the number of sporulation operons. J Bacteriol 114:1241–1253

    Google Scholar 

  • Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113:237–251

    Google Scholar 

  • Saito H, Miura K (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochem Biophys Acta 72:619–626

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A laboratory manual (2nd edn) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Silbert DF, Pohlman T, Chapman A (1976) Partial characterization of a temperature-sensitive mutation affecting acetyl coenzyme A carboxylase inEscherichia coli K-12. J Bacteriol 126:1351–1354

    Google Scholar 

  • Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Tabor S, Richardson CC (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82:1074–1078

    Google Scholar 

  • Tschen JS-M (1987) Control of Rhizoctonia solani byBacillus subtilis. Trans Mycol Soc Japan 28:483–493

    Google Scholar 

  • Turgay K, Krause M, Marahiel MA (1992) Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes. Mol Microbiol 6:529–546

    Google Scholar 

  • Vanittanakom N, Loefer W (1986) Fengycin — a novel antifungal lipopeptide antibiotic produced byBacillus subtilis F29-3. J Antibiot 39:888–901

    Google Scholar 

  • Verwoert IIGS, Verbree EC, van der Linden KH, Nijkamp HJJ, Stuitje AR (1992) Cloning, Nucleotide sequence, and expression of theEscherichia coli fabD gene, encoding malonyl Coenzyme A-acyl carrier protein transacylase. J Bacteriol 174:2851–2857

    Google Scholar 

  • Vollenbroich D, Mehra N, Zuber P, Vater J, Kamp RM (1994) Analysis of surfactin synthetase subunits insrfA mutants ofBacillus subtilis OKB105. J Bacteriol 176:395–400

    Google Scholar 

  • Weckermann R, Fürbass R, Marahiel MA (1988) Complete nucleotide sequence oftycA gene coding the tyrocidine synthetase 1 fromBacillus brevis. Nucleic Acids Res 18:11841

    Google Scholar 

  • Yasbin RE, Andersen BJ, Sutherland BM (1981) Ability ofBacillus subtilis protoplasts to repair irradiated bacteriophage deoxyribonucleic acid via acquired and natural enzymatic systems. J Bacteriol 147:949–953

    Google Scholar 

  • Youngman P, Perkins JB, Losick R (1983) Genetic transposition and insertional mutagenesis inBacillus subtilis withStreptococcus faecalis transposon Tn917. Proc Natl Acad Sci USA 80:2305–2309

    Google Scholar 

  • Youngman P, Perkins JB, Losick R (1984) A novel method for the rapid cloning inEscherichia coli ofBacillus subtilis chromosomal DNA adjacent to Tn917 insertions. Mol Gen Genet 195:424–433

    Google Scholar 

  • Zuber P, Nakano MM, Marahiel MA (1993) Peptide antibiotics. In: Sonnenschein AL, Hoch J A, Losick R (eds)Bacillus subtilis and other gram-positive bacteria. American Society for Microbiology, Washington DC, pp 897–916

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. F. Lengeler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CL., Chang, LK., Chang, YS. et al. Transposon mutagenesis and cloning of the genes encoding the enzymes of fengycin biosynthesis inBacillus subtilis . Molec. Gen. Genet. 248, 121–125 (1995). https://doi.org/10.1007/BF02190792

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02190792

Key words

Navigation