Skip to main content
Log in

Schwefel in Waldböden Nordwest-Deutschlands und seine vegetationsabhängige Akkumulation

  • Published:
Plant and Soil Aims and scope Submit manuscript

Summary

Amounts of total sulfur and sulfate (NaHCO3-extractable) were determined in soil samples from 19 representative profiles under forest vegetation in the areas of pleistocene and of the triassic middle range mountains in Germany. The mean total sulfur contents in surface and subsurface samples were 278 and 136 μg S/g soil respectively. The total amount of sulfate and its fraction in the total sulfur was low in the surface samples. The subsurface soil samples of pH>5 contained very little sulfate. The difference between total sulfur and NaHCO3-extractable sulfate described as nonsulfate fraction was mainly constituted by the fraction of organic sulfur. The mean C:N:S ratio (sulfur as nonsulfate) for samples with carbon content more than 2% was 225∶10∶1.14. Compared with the parent material there was an accumulation of S in the acid brown earths developed from loess. Comparison of the sites with beech and spruce vegetation showed that the amount of nonsulfate-sulfur was of the same magnitude in both sites, but the amount of sulfate was higher in the spruce area. Similar differences between a beech and a spruce site were also observed for soils developed from weathered sandstone. The high amounts of sulfate under spruce are probably the result of higher inputs in the area due to the ‘filtering action’ of the spruce trees on emitted SO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Barrow, N. J. 1961 Studies on mineralization of sulphur from soil organic matter. Aust. J. Agric. Res.12, 306–319.

    Article  Google Scholar 

  2. Bertrand, M. D. 1970 Comparaison des teneurs en sourfre total des terres francaises en 1927 et en 1967–69. C. R. Acad. Agric. France56, 105–107.

    Google Scholar 

  3. Bettany, J. R. und Steward, J. W. 1973 Sulfur fractions and carbon, nitrogen and sulfur relationships in grass land, forest and associated transitional soils. Soil Sci. Soc. Am. Proc.37, 915–918.

    Google Scholar 

  4. Bradstreet, R. B. 1965 The Kjeldahl method for organic nitrogen. New York-London: Acad. Press.

    Google Scholar 

  5. v. Breemen, N. 1972 Soil forming processes in acid sulphate soils, 66–130.In Acid sulphate soils — Proceedings of the international symposium, August 1972, Wageningen. Vol. 1.

  6. Buchner, A. 1958 Die Schwefelversorgung der westdeutschen Landwirtschaft. Landwirtsch. Forsch11, 79–92.

    Google Scholar 

  7. Coleman, R. 1966 The importance of sulfur as a plant nutrient in world crop production. Soil Sci.101, 230–239.

    Google Scholar 

  8. Gebhardt, H. und Coleman, N. T. 1974 Anion adsorption by allophanic tropical soils: II sulfate adsorption. Soil Sci. Soc. Am. Proc.38, 259–262.

    Google Scholar 

  9. Grether, C. 1965 Die Bestimmung von Sulfat mit potentiometrischer Titration. Applic. Bull. Nr.A 38 d, Methrom, Herisan, Schweiz.

    Google Scholar 

  10. Grunwaldt, H. S. 1969 Untersuchungen zum Schwefelhaushalt der Schleswig-Holsteinischen Böden. Diss., Kiel.

  11. Harward, H. M. W. und Reisenauer, H. M. 1966 Reactions and movement of inorganic soil sulfur. Soil Sci.101, 326–335.

    Google Scholar 

  12. Heinrichs, H. und Mayer, R. 1977 Distribution and cycling of major and trace elements in two central European forest ecosystems. J. Environ. Qual.6, 402–407.

    Google Scholar 

  13. Holz, F. 1971 Die automatische Bestimmung des Stickstoffs als Indophenolgrün in Böden und Pflanzen. Landwirtsch. Forsch., Sonderh26, 1, 177–191.

    Google Scholar 

  14. Jensen, J. 1964 Investigations concerning sulfur in Danish Soils. 8th Int. Congr. Soil Sci. Trans.4, 411–417.

    Google Scholar 

  15. Jones, L. H. P., Cowling, D. W. und Lockyer, D. R. 1972 Plant available and extractable sulfur in some soils of England and Wales. Soil Sci.114, 104–114.

    Google Scholar 

  16. Kaiser H. und Specker H. 1956 Bewertung und Vergleich von Analysenverfahren. Z. Anal. Chem.149, 46.

    Article  Google Scholar 

  17. Khanna P. K. und Beese, F. 1978 The behavior of sulfate on salt input in podzolic brown earth. Soil Sci.125, 16–22.

    Google Scholar 

  18. Kjeldahl, J. 1883 Med. Carlsberg Lab. 2,1 (1883). Z. Anal. Chem.22, 366.

  19. Kilmer, V. J. und Nearpass, D. C. 1960 The determination of available sulfur in soils. Soil Sci. Soc. Am. Proc.24, 337–340.

    Google Scholar 

  20. Korkman, J. 1973 Sulphur status in Finish cultivated soils. J. Sci. Agric. Soc. Finl.45, 121–215.

    Google Scholar 

  21. Kurmies, B. 1957 Über den Schwefelhaushalt des Bodens. Phosphorsäure17, 258–277.

    Google Scholar 

  22. Kühn, H., Weller, H. 1977 6-jährige Untersuchungen über Schwefelzufuhr durch Niederschläge und Schwefelverluste durch Auswaschung. Z. Pflanzenernaehr. Bodenkd.140, 431–440.

    Google Scholar 

  23. Lange, J. und Brumsack, H. J. 1977 Total sulphur analysis in geological and biological materials by coulometric titration following combustion. Z. Anal. Chem.286, 361–366.

    Article  Google Scholar 

  24. McLachlan, K. D. (Ed.) 1975 Sulphur in Australian Agriculture. Sydney University Press.

  25. Rehm G. W. und Caldwell A. C. 1968 Sulphur supplying capacity of soils and the relationship to soil type. Soil Sci.105, 355–361.

    Google Scholar 

  26. Russell, E. W. 1973 Soil Conditions and Plant Growth. Longman, London.

    Google Scholar 

  27. Saalbach, E., Judel G. K. und Kessen, G. K. 1962 Untersuchungen über die Bestimmung des Gehaltes an pflanzenverfügbarem Schwefel im Boden. Landwirtsch. Forsch.15, 6–14.

    Google Scholar 

  28. Scott, N. M. und Anderson, G. 1976 Organic sulphur fractions in Scottish soils. J. Sci. Food Agric.27, 358–366.

    Google Scholar 

  29. Simon-Sylvestre, G. 1969 Premiers résultats d-une enquête sur le soufre total des sols cultivés francais. Ann. Agron.20, 609–625.

    Google Scholar 

  30. Singh, S. S. und Brydon, J. E. 1969 Solubility of basic aluminum sulfates at equilibrium in solution and in the presence of montmorillonite. Soil Sci.107, 12–16.

    Google Scholar 

  31. Tabatabai, M. A. und Bremner, J. M. 1972 Forms of sulfur, and carbon, nitrogen and sulfur relationships in Iowa soils. Soil Sci.114, 5, 380–386.

    Google Scholar 

  32. Williams, C. H und Steinbergs, A. 1958 Sulphur and phosphorus in some Eastern Australian soils. Aust. J. Agric. Res.9, 483–491.

    Article  Google Scholar 

  33. Williams, C. H. und Steinbergs, A. 1962 The evaluation of plant-available sulphur in soils: I. The chemical nature of sulphate in some Australian soils. Plant and Soil17, 279–294.

    Article  Google Scholar 

  34. Williams, C. H., Williams, E. G. und Scott, N. M. 1960 Carbon, nitrogen, sulphur and phosphorus in some Scottish soils. J. Soil Sci.11, 334–346.

    Google Scholar 

  35. Wösthoff OHG, Apparatebau: Gasanalysen-Messanlage, 1959 S. 6.

  36. Ulrich, B., Mayer, R., Khanna, P. K., Seekamp, G. und Fassbender, H. W. 1977 Input, Output und interner Umsatz von chemischen Elementen bei einem Buchen- und einem Fichtenbestand.In Verhandlungen der Gesellschaft für Ökologie. Ed. P. Müller. Göttingen 1976. 17–18, Dr. W. Junk, B.V. The Hague.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meiwes, K.J., Heinrichs, H. & Khanna, P.K. Schwefel in Waldböden Nordwest-Deutschlands und seine vegetationsabhängige Akkumulation. Plant Soil 54, 173–183 (1980). https://doi.org/10.1007/BF02181843

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02181843

Key Words

Navigation