Skip to main content
Log in

The Content and Composition of Organic Matter in Soils of the Subpolar Urals

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soil organic matter at high latitudes is an important and sensitive indicator of climate change. This article describes the main morphological features, chemical properties, and composition of organic matter in the main types of soils along the altitudinal gradient of the Subpolar Urals. Soils formed in the mountain tundra zone (gleyic humus-illuvial podbur/Skeletiс Stagnic Entic Podzol (Turbic)), in the mountain subalpine zone (gray-humus soil/Skeletiс Umbrisol), in the mountain taiga zone (iron-illuvial podzol/Skeletiс Albic Podzol), and in the mountain tundra zone with permafrost (permafrost-affected gleyic humus-illuvial podbur/Skeletiс Folic Cryosol (Humic)) were studied. The method of densimetric fractionation was applied to study soil organic matter; it enabled us to distinguish its three fractions, differing in carbon participation in the biological turnover: free particulate organic matter (fPOM<1.6), occluded particulate organic matter (oPOM<1.6), and heavy organic matter bound with the mineral phase (MaOM>1.6). The latter fraction dominated in the upper mineral soil horizons and comprised 89–93% of the total organic carbon. The content of light fractions was significantly lower (0.6–4.7%). However, the content of organic carbon and nitrogen in the studied soils directly correlated with the contents of light fractions fPOM<1.6 (r = 0.40 and r = 0.79, p < 0.05) and oPOM<1.6 (r = 0.68 and r = 0.83, p < 0.05). Aliphatic fragments dominated in the composition of POM; their content varied from 74.5 to 80.5% for fPOM<1.6 and from 77.9 to 84.2% for oPOM<1.6. In addition, it was found that the organic matter of the oPOM<1.6 fraction was characterized by a higher decomposition rate (0.4–2.4) and hydrophobicity (34.7–66.5%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. N. Yu. Grechishcheva, Doctoral Dissertation in Chemistry (Ivanovo, 2017).

  2. V. N. Dimo, Thermal Regime of Soils of the USSR (Kolos, Moscow, 1972) [in Russian].

    Google Scholar 

  3. G. V. Dobrovol’skii and I. S. Urusevskaya, Geography of Soils (Moscow State Univ., Moscow, 1984) [in Russian].

    Google Scholar 

  4. A. A. Dymov, E. V. Zhangurov, and V. V. Startsev, “Soils of the northern part of the Subpolar Urals: morphology, physicochemical properties and carbon and nitrogen pools,” Eurasian Soil Sci. 46, 459–467 (2013). https://doi.org/10.1134/S1064229313050025

    Article  Google Scholar 

  5. A. A. Dymov and E. V. Zhangurov, “Diversity and genetic features of soils of the Polar Urals,” Perm. Agrar. Vestn., No. 3 (7), 45–52 (2014).

  6. A. A. Larionova, B. N. Zolotareva, Yu. G. Kolyagin, A. K. Kvitkina, V. V. Kaganov, and V. N. Kudeyarov, “Composition of structural fragments and the mineralization rate of organic matter in zonal soils,” Eurasian Soil Sci. 48, 1110–1119 (2015). https://doi.org/10.1134/S1064229315100063

    Article  Google Scholar 

  7. E. D. Lodygin, V. A. Beznosikov, and R. S. Vasilevich, “Molecular composition of humic substances in tundra soils (13C-NMR spectroscopic study),” Eurasian Soil Sci. 47, 400–406 (2014). https://doi.org/10.1134/S1064229314010074

    Article  Google Scholar 

  8. N. G. Oberman, “Permafrost and cryogenic processes in the East-European Subarctic,” Eurasian Soil Sci. 31, 486–496 (1998).

    Google Scholar 

  9. Field Guide for Identification of Russian Soils (Moscow, 2008) [in Russian].

  10. V. I. Polyakov, N. A. Chegodaeva, and E. V. Abakumov, “Molecular and elementary composition of humic acids extracted from soils of the Russian Arctic,” Vestn. Tomsk. Gos. Univ., Biol., No. 47, 6–21 (2019). https://doi.org/10.17223/19988591/47/1

  11. V. M. Semenov, T. N. Lebedeva, and N. B. Pautova, “Particulate organic matter in noncultivated and arable soils,” Eurasian Soil Sci. 52, 396-404 (2019). https://doi.org/10.1134/S1064229319040136

    Article  Google Scholar 

  12. V. V. Startsev, E. V. Zhangurov, and A. A. Dymov, “Characteristics of soils in altitudinal zones of the Yaptiknyrd Ridge (Subpolar Urals),” Vestn. Tomsk. Gos. Univ., Biol., No. 38, 6–27 (2017). https://doi.org/10.17223/19988591/38/1

  13. V. V. Startsev, Yu. A. Dubrovskii, E. V. Zhangurov, and A. A. Dymov, “Spatial heterogeneity of soil properties in the zone of sporadic distribution of permafrost (Subpolar Urals),” Vestn. Tomsk. Gos. Univ., Biol., No. 48, 32–55 (2019). https://doi.org/10.17223/19988591/48/2

  14. Floras, Lichen- and Microbiota of Strictly Protected Landscapes of the Kos’yu and Bol’shaya Synya River Basins (Cis-Polar Urals, Yugyd Va National Park), Ed. by S. V. Degteva (KMK, Moscow, 2016) [in Russian].

    Google Scholar 

  15. V. A. Kholodov, A. I. Konstantinov, A. V. Kudryavtsev, and I. V. Perminova, “Structure of humic acids in zonal soils from 13C NMR data,” Eurasian Soil Sci. 44, 976–983 (2011). https://doi.org/10.1134/S1064229311090043

    Article  Google Scholar 

  16. A. G. Shepelev, E. V. Starostin, A. N. Fedorov, and T. Kh. Maksimov, “Preliminary analysis of organic carbon and nitrogen reserves in sediments of the ice complex in Central Yakutia,” Nauka Obraz., No. 2, 35–42 (2016).

  17. Yu. P. Yudin, “Flora,” in Productive Forces of the Komi ASSR (Academy of Sciences of USSR, Moscow, 1954), Vol. 3, Part 1.

    Google Scholar 

  18. E. Abakumov, E. Lodygin, and V. Tomashunas, “13C NMR and ESR characterization of humic substances isolated from soils of two Siberian Arctic Islands,” Int. J. Ecol. 2015, 390591 (2015). https://doi.org/10.1155/2015/390591

    Article  Google Scholar 

  19. W. Amelung, K. W. Flach, and W. Zech, “Climatic effects on soil organic matter composition in the Great Plains,” Soil Sci. Soc. Am. J. 61, 115–123 (1997). https://doi.org/10.2136/sssaj1997.03615995006100010018x

    Article  Google Scholar 

  20. C. Cerli, L. Celi, K. Kalbitz, G. Guggenberger, and K. Kaiser, “Separation of light and heavy organic matter fractions in soil—Testing for proper density cut-off and dispersion level,” Geoderma 170, 403–416 (2012).

    Article  Google Scholar 

  21. B. T. Christensen, “Physical fractionation of soil and structural and functional complexity in organic matter turnover,” Eur. J. Soil Sci. 52, 345–353 (2001).

    Article  Google Scholar 

  22. X. Y. Dai, C. L. Ping, R. Candler, L. Haumaier, and W. Zech, “Characterization of soil organic matter fractions of tundra soils in arctic Alaska by carbon-13 nuclear magnetic resonance spectroscopy,” Soil Sci. Soc. Am. J. 65, 87–93 (2001). https://doi.org/10.2136/sssaj2001.65187x

    Article  Google Scholar 

  23. C. Dörfer, P. Kühn, F. Baumann, J.-S. He, and T. Scholten, “Soil organic carbon pools and stocks in permafrost-affected soils on the Tibetan Plateau,” PLoS One 8 (2), e57024 (2013). https://doi.org/10.1371/journal.pone.0057024

    Article  Google Scholar 

  24. A. A. Dymov, E. V. Zhangurov, and F. Hagedorn, “Soil organic matter composition along altitudinal gradients in permafrost affected soils of the Subpolar Ural Mountains,” Catena 131, 140–148 (2015). https://doi.org/10.1016/j.catena.2015.03.020

    Article  Google Scholar 

  25. E. Ejarque and E. Abakumov, “Stability and biodegradability of organic matter from Arctic soils of Western Siberia: Insights from 13C-NMR spectroscopy and elemental analysis,” Solid Earth 7 (1), 153–165 (2016). https://doi.org/10.5194/se-7-153-2016

    Article  Google Scholar 

  26. C. N. Goncalves, S. D. Dalmolin, D. P. Dick, H. Knicker, E. Klamt, and I. Kögel-Knabner, “The effect of 10% HF treatment on resolution of CPMAS 13C NMR spectra and on the quality of organic matter in ferralsols,” Geoderma 116, 373–392 (2003).

    Article  Google Scholar 

  27. G. Grünewald, K. Kaiser, R. Jahn, and G. Guggenberger, “Organic matter stabilization in young calcareous soils as revealed by density fractionation and analysis of lignin-derived constituents,” Org. Geochem. 37, 1573–1589 (2006).

    Article  Google Scholar 

  28. R. Guareschi, M. Pereira, and A. Perin, “Densimetric fractionation of organic matter in an agricultural chronosequence in no-till areas in the Cerrado region, Brazil,” Semina: Cienc. Agrar. 37, 595–610 (2016). https://doi.org/10.5433/1679-0359.2016v37n2p595

    Article  Google Scholar 

  29. M. Hutta, R. Gora, R. Halko, and M. Chalanyova, “Some theoretical aspects in the separation of humic substances by combined liquid chromatography methods,” J. Chromatogr. A 1218, 8946–8957 (2011). https://doi.org/10.1016/j.chroma.2011.06.107

    Article  Google Scholar 

  30. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization of the United Nations, Rome, 2015).

    Google Scholar 

  31. H. H. Janzen, C. A. Campbell, S. A. Brandt, G. P. Lafond, and L. Townley-Smith, “Light-fraction organic matter in soils from long-term crop rotations,” Soil Sci. Soc. Am. J. 56, 1799–1806 (1992).

    Article  Google Scholar 

  32. C. Keeler, E. F. Kelly, and G. E. Maciel, “Chemical-structural information from solid-state 13C NMR studies of a suite of humic materials from a lower montane forest soil, Colorado, USA,” Geoderma 130 (1–2), 124–140 (2006). https://doi.org/10.1016/j.geoderma.2005.01.015

    Article  Google Scholar 

  33. I. Kögel-Knabner, “13C and 15N NMR spectroscopy as a tool in soil organic matter studies,” Geoderma 80, 243–270 (1997). https://doi.org/10.1016/S0016-7061(97)00055-4

    Article  Google Scholar 

  34. A. Kölbl and I. Kögel-Knabner, “Content and composition of free and occluded particular organic matter in differently textured arable Cambisol as revealed by solid state 13C NMR spectroscopy,” J. Plant Nutr. Soil Sci. 167, 45–53 (2004). https://doi.org/10.1002/jpln.200321185

    Article  Google Scholar 

  35. H. Lee, E. A. G. Schuur, and J. G. Vogel, “Soil CO2 production in upland tundra where permafrost is thawing,” J. Geophys. Res.: Biogeosci. 115, G01009 (2010). https://doi.org/10.1029/2008JG000906

    Article  Google Scholar 

  36. E. Lodygin, V. Beznosikov, and E. Abakumov, “Humic substances elemental composition of selected taiga and tundra soils from Russian European North-East,” Pol. Polar Res. 38, 125–147 (2017). https://doi.org/10.1515/popore-2017-0007

    Article  Google Scholar 

  37. M. Ludwig, J. Achtenhagen, A. Miltner, K. Eckhardt, P. Leinweber, C. Emmerling, and S. Thiele-Bruhn, “Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils,” Soil Biol. Biochem. 81, 311–322 (2015). https://doi.org/10.1016/j.soilbio.2014.12.002

    Article  Google Scholar 

  38. G. Mastrolonardo, O. Francioso, M. Di Foggia, S. Bonora, C. Forte, and G. Certini, “Soil pyrogenic organic matter characterization by spectroscopic analysis: a study on combustion and pyrolysis residues,” J. Soils Sediments 15, 769–780 (2015). https://doi.org/10.1007/s11368-014-1034-x

    Article  Google Scholar 

  39. G. J. Michaelson, C. L. Ping, H. E. Epstein, J. M. Kimble, and D. A. Walker, “Soils and frost boil ecosystems across the North American Arctic Transect,” J. Geophys. Res.: Biogeosci. 113, G03S11 (2008). https://doi.org/10.1029/2007JG000672

    Article  Google Scholar 

  40. J. R. Miesel, W. C. Hockaday, R. K. Kolka, and P. A. Townsend, “Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region,” J. Geophys. Res.: Biogeosci. 120, 1124–1141 (2015). https://doi.org/10.1002/2015JG002959

    Article  Google Scholar 

  41. R. Mikutta, S. Turner, A. Schippers, N. Gentsch, S. Meyer-Stüve, L. M. Condron, D. A. Peltzer, S. J. Richardson, A. Eger, G. Hempel, K. Kaiser, T. Klotzbücher, and G. Guggenberger, “Microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient,” Sci Rep. 9, 10294 (2019). https://doi.org/10.1038/s41598-019-46501-4

    Article  Google Scholar 

  42. V. Polyakov, E. Zazovskaya, and V. Abakumov, “Molecular composition of humic substances isolated from selected soils and cryconite of the Grønfjorden area, Spitsbergen,” Pol. Polar Res. 40, 105–120 (2019). https://doi.org/10.24425/ppr.2019.128369

    Article  Google Scholar 

  43. C. Santin, S. H. Doerr, A. Merino, R. Bryant, and N. J. Loader, “Forest floor chemical transformations in a boreal forest fire and their correlations with temperature and heating duration,” Geoderma 264, 71–80 (2016). https://doi.org/10.1016/j.geoderma.2015.09.021

    Article  Google Scholar 

  44. M. W. I. Schmidt, M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, D. A. C. Manning, P. Nannipieri, D. P. Rasse, S. Weiner, and S. E. Trumbore, “Persistence of soil organic matter as an ecosystem property,” Nature 478 (7367), 49–56 (2011). https://doi.org/10.1038/nature10386

    Article  Google Scholar 

  45. E. A. G. Schuur, A. D. McGuire, G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius, C. D. Koven, and P. Kuhry, “Climate change and the permafrost carbon feedback,” Nature 520, 171–179 (2015). https://doi.org/10.1038/nature14338

    Article  Google Scholar 

  46. S. Sjögersten, B. L. Turner, N. Mahieu, L. M. Condron, and P. A. Wookey, “Soil organic matter biochemistry and potential susceptibility to climatic across the forest-tundra ecotone in the Fennoscandian mountains,” Global Change Biol. 9, 759–772 (2003). https://doi.org/10.1046/j.1365-2486.2003.00598.x

    Article  Google Scholar 

  47. V. V. Startsev, D. D. Khaydapova, S. V. Degteva, and A. A. Dymov, “Soils on the southern border of the cryolithozone of European part of Russia (the Subpolar Urals) and their soil organic matter fractions and rheological behavior,” Geoderma 361, (2020). https://doi.org/10.1016/j.geoderma.2019.114006

  48. R. Sutton and G. Sposito, “Molecular structure in soil humic substances: the new view,” Environ. Sci. Technol. 23, 9009–9015 (2005). https://doi.org/10.1021/es050778q

    Article  Google Scholar 

  49. A. M. Tadini, G. Pantano, A. L. Toffoli, B. Fontaine, R. Spaccini, A. Piccolo, A. B. Moreira, and M. C. Bisinoti, “Off-line TMAH-GC/MS and NMR characterization of humic substances extracted from river sediments of northwestern São Paulo under different soil uses,” Sci. Total Environ. 506–507, 234–240 (2015). https://doi.org/10.1016/j.scitotenv.2014.11.012

    Article  Google Scholar 

  50. M. Valtera and P. Šamonil, “Soil organic carbon stocks and related soil properties in a primary Picea abies (L.) Karst. volcanic-mountain forest,” Catena 165, 217–227 (2018). https://doi.org/10.1016/j.catena.2018.01.034

    Article  Google Scholar 

  51. R. Vasilevich, E. Lodygin, and E. Abakumov, “Molecular composition of humic substances isolated from permafrost peat soils of the eastern European Arctic,” Pol. Polar Res. 39, 481–503 (2019). https://doi.org/10.24425/118757

    Article  Google Scholar 

  52. M. P. Waldrop, K. P. Wickland, R. White III, A. A. Berhe, W. Harden, and V. E. Romanovsky, “Molecular investigation into a globally important carbon pool: permafrost protected carbon in Alaskan soils,” Global Change Biol. 16, 254–255 (2010). https://doi.org/10.1111/j.1365-2486.2009.02141.x

    Article  Google Scholar 

Download references

Funding

This research was supported by the Russian Foundation for Basic Research (project no. 18-34-00618) and by the Integrated Program for Basic Research of the Ural Branch, Russian Academy of Sciences, project no. 18-4-4-14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Startsev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Startsev, V.V., Mazur, A.S. & Dymov, A.A. The Content and Composition of Organic Matter in Soils of the Subpolar Urals. Eurasian Soil Sc. 53, 1726–1734 (2020). https://doi.org/10.1134/S106422932012011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422932012011X

Keywords

Navigation