Skip to main content
Log in

The energy transmission in ATP synthase: From the γ-c rotor to the α3β3 oligomer fixed by OSCP-b stator via the βDELSEED sequence

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

ATP synthase (F0F1) is driven by an electrochemical potential of H+ (δΜH+). F0F1 is composed of an ion-conducting portion (F0) and a catalytic portion (F1). The subunit composition of F1 is α3β3γδε. The active α3β3 oligomer, characterized by X-ray crystallography, has been obtained only from thermnophilic F1 (TF1). We proposed in 1984 that ATP is released from the catalytic site (C site) by a conformational change induced by the βDELSEED sequence via γδε-F0. In fact, cross-linking of βDELSEED to γ stopped the ATP-driven rotation of γ in the center of α3β3. The torque of the rotation is estimated to be 420 pN·å from the δΜH+ and H+-current through F0F1. The angular velocity (Ω) of γ is the rate-limiting step, because δΜH+ increased theV max of H+ current through F0, but not theK m (ATP). The rotational unit of F0 (=ab2c10) is π/5, while that in α3β3 is 2π/3. This difference is overcome by an analog-digital conversion via elasticity around βDELSEED with a threshold to release ATP. The αβ distance at the C site is about 9.6 å (2,8-diN3-ATP), and tight Mg-ATP binding in α3β3γ was shown by ESR. The rotational relaxation of TF1 is too rapid (Φ=100 nsec), but the rate of AT(D)P-induced conformational change of α3β3 measured with a synchrotron is close to Ω. The ATP bound between the P-loop and βE188 is released by the shift of βDELSEED from γRGL. Considering the viscosity resistance and inertia of the free rotor (γ-c), there may be a stator containing OSCP (=δ of TF1) and F0-d to hold free rotation of α3β3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

F0F1 :

ATP synthase

F1 :

catalytic portion of F0F1

F0 :

ion-conducting portion of F0F1

α3β3γδε:

subunit composition of F1

C:

catalytic site

NC:

noncatalytic site

I:

ion-binding site in the c subunit of F0

DELSEED:

Asp-Glu-Leu-Ser-Glu-Glu-Asp- sequence in the N-terminal region of the β subunit of F1

P-loop:

-Gly-X-X-X-X-Gly-Lys-Thr- sequence of both the α and β subunit of F1

2-N3-AT(D)P:

2-azido-AT(D)P

2-N3-SL-AT(D)P:

2-azido-spin label AT(D)P

AMPPNP:

5′-adenylyl-imino diphosphate

BzAT(D)P:

3′-o-(4-benzoyl)benzoyl-AT(D)P

c10 :

decamer of the c subunit of F0

δΜH+ :

electrochemical potential difference of protons across the membrane

δψ:

electric potential difference (voltage) across the membrane

References

  • Abrahams, J. P., Leslie, A. G. W., Lutter, R. and Walker, J. E. (1994).Nature 370, 621–628.

    PubMed  Google Scholar 

  • Aggeler, R., Haughton, M. A., and Capaldi, R. A. (1995).J. Biol. Chem. 270, 9185–9191.

    PubMed  Google Scholar 

  • Akiyama, S., Matsuda, C., and Kagawa, Y. (1995).Biochemistry of Cell Membranes (Papa, S., and Taber, J. M., eds.), Birkhauser, Verlag, Basel, pp. 167–178.

    Google Scholar 

  • Aloise, P., Kagawa, Y., and Coleman, P. S. (1991).J. Biol. Chem. 266, 10368–10376.

    PubMed  Google Scholar 

  • Amman, R., Ludwig, W., Laubinger, W., Dimroth, P., and Schleifer, K. H. (1988).FEMS Microbiol. Lett. 56, 253–260.

    Google Scholar 

  • Belogrudov, G. I., Tomich, J. M., and Hateft, Y. (1995).J. Biol. Chem. 270, 2053–2060.

    PubMed  Google Scholar 

  • Berg, H. C. (1995).Biophys. J. 68, 163s-167s.

    PubMed  Google Scholar 

  • Bianchet, M., Ysern, X., Hullihen, J., Pedersen, P. L., and Amzel, L. M. (1991).J. Biol. Chem. 266, 21197–21201.

    PubMed  Google Scholar 

  • Boyer, P. D. (1993).Biochim. Biophys. Acta 1140, 215–250.

    PubMed  Google Scholar 

  • Burgard, S., Nett, J. H., Sauer, H. E., Kagawa, Y., SchÄfer, H-J., Wise, J. G., Vogel, P. D., and Trommer, W. E. (1994).J. Biol. Chem. 269, 17815–17819.

    PubMed  Google Scholar 

  • Burgard, S., Kagawa, Y., Wise, J. G., Trommer, W. E., and Vogel, P. D. (1995).Biophys. J. 68, A320.

    Google Scholar 

  • Capaldi, R. A. (1994).Trends Biochem. Sci. 19, 284–289.

    PubMed  Google Scholar 

  • Collinson, I. R., van Raaij, M. J., Runswick, M. J., Fearnley, I. M., Skehel, J. M., Orriss, G. L., Miroux, B., and Walker, J. E. (1994a).J. Mol. Biol. 242, 408–421.

    PubMed  Google Scholar 

  • Collinson, I. R., Runswick, M. J., Buchanan, S. K., Fearnley, I. M., Skehel, J. M., van Raaij, M. J., Griffiths, D. A., and Walker, J. E. (1994b).Biochemistry 33, 7971–7978.

    PubMed  Google Scholar 

  • Cox, G. B., Jans, D. A., Fimmel, A. L., Gibson, F., and Hatch, L. (1984).Biochim. Biophys. Acta 768, 201–208.

    PubMed  Google Scholar 

  • Dmitriev, O. Y., Altendorf, K., and Fillingame, R. H. (1995).Eur. J. Biochem. 233, 478–483.

    PubMed  Google Scholar 

  • Duncan, T. M., Bulygin, V. V., Zhou, Y., Hutcheon, M. L., and Cross, R. L. (1995).Proc. Natl. Acad. Sci. USA 82, 10964–10968.

    Google Scholar 

  • Dunn, S. D. (1992).J. Biol. Chem. 267, 7630–7636.

    PubMed  Google Scholar 

  • Florin, E-L., Moy, V. T., and Gaub, H. E. (1994).Science 264, 415–417.

    PubMed  Google Scholar 

  • Futai, M., Omote, H., and Maeda, M. (1995).Biochem. Soc. Trans. 23, 785–789.

    PubMed  Google Scholar 

  • Groth, G., and Junge, W. (1995).Biochemistry 34, 8589–8596.

    PubMed  Google Scholar 

  • Harada, M., Ito, Y., Sato, M., Aono, O., Ohta, S., and Kagawa, Y. (1991).J. Biol. Chem. 266, 11455–11460.

    PubMed  Google Scholar 

  • Hayashi, S., and Oosawa, F. (1984).J. Phys. Soc. Jpn. 53, 1575–1579.

    Google Scholar 

  • Hirata, H., Ohno, K., Sone, N., Kagawa, Y., and Hamamoto, T. (1986).J. Biol. Chem. 261, 8939–8943.

    Google Scholar 

  • Ichikawa, N., Yoshida, Y., Hashimoto, T. and Tagawa, K. (1996).J. Biochem. 119, 193–199.

    PubMed  Google Scholar 

  • Jault, J-M., Matsui, T., Jault, F. M., Kalbara, C., Muneyuki, E., Yoshida, M., Kagawa, Y., and Alison, W. S. (1995).Biochemistry 34, 16412–16418.

    PubMed  Google Scholar 

  • Jeanteur-De Beukelaer, C., Omote, H., Iwamoto-Kihara, A., Maeda, M., and Futai, M. (1995).J. Biol. Chem. 270, 22850–22854.

    PubMed  Google Scholar 

  • Kagawa, Y. (1972).Biochim. Biophys. Acta 265, 297–338.

    PubMed  Google Scholar 

  • Kagawa, Y. (1978).Biochim. Biophys. Acta 505, 45–93.

    PubMed  Google Scholar 

  • Kagawa, Y. (1984). Protonmotive ATP synthesis. In (Ernster, L. ed.)Bioenergetics, New Comprehensive Biochemistry, Elsevier, Amsterdam, pp. 149–186.

    Google Scholar 

  • Kagawa, Y., and Racker, E. (1966).J. Biol. Chem. 241, 2475–2482.

    PubMed  Google Scholar 

  • Kagawa, Y., and Racker, E. (1971).J. Biol. Chem. 246, 5477–5487.

    Google Scholar 

  • Kagawa, Y., Ishizuka, M., Saishu, T., and Nakao, S. (1986).J. Biochem. 100, 923–934.

    PubMed  Google Scholar 

  • Kagawa, Y., Ohta, S., and Otawara-Hamamoto, Y. (1989).FEBS Lett. 249, 67–69.

    PubMed  Google Scholar 

  • Kagawa, Y., Ohta, S., Harada, M., Sato, M., and Ito, Y. (1992).Ann. N. Y. Acad. Sci. 671, 366–376.

    PubMed  Google Scholar 

  • Kaibara, C., Matsui, T., Hisabori, T. and Yoshida, M. (1996).J. Biol. Chem 271, 2433–2438.

    PubMed  Google Scholar 

  • Kandpal, R. P., and Boyer, P. D. (1987).Biochim. Biophys. Acta 890, 97–105.

    PubMed  Google Scholar 

  • Kayalar, C., Rosing, J., and Boyer, P. D. (1977).J. Biol. Chem 252, 2486–2491.

    PubMed  Google Scholar 

  • Kinoshita, K., Jr., Ikegami, A., Yoshida, M., and Kagawa, Y. (1982).J. Biochem. 92, 2043–2046.

    PubMed  Google Scholar 

  • Kojima, H., Ishijima, A. and Yanagida, T. (1994).Proc. Natl. Acad. Sci. USA 91, 12962–12966.

    PubMed  Google Scholar 

  • Maruyama, K. (1994).Biophys. Chem. 50, 73–85.

    PubMed  Google Scholar 

  • Matsuda, C., Endo, H., Ohta, S., and Kagawa, Y. (1993).J. Biol. Chem. 268, 24950–24958.

    PubMed  Google Scholar 

  • Mitchell, P. (1979).Science 206, 1148–1159.

    PubMed  Google Scholar 

  • Muneyuki, E., Kagawa, Y., and Hirata, H. (1989).J. Biol. Chem. 264, 6092–6096.

    PubMed  Google Scholar 

  • Muramoto, K., Kawagishi, I., Kudo, S., Magariyama, Y., Imae, Y. and Homma, M. (1995).J. Mol. Biol. 251, 50–58.

    PubMed  Google Scholar 

  • Musier-Forsyth, K. M., and Hammes, G. G. (1990).Biochemistry 29, 3236–3241.

    PubMed  Google Scholar 

  • Nakamoto, R. K., Maeda, M., and Futai, M. (1993).J. Biol. Chem. 268, 867–872.

    PubMed  Google Scholar 

  • Ohta, S., Yohda, M., Ishizuka, M., Hirata, H., Hamamoto, T., Otawara-Hamamoto, Y., Matsuda, K., and Kagawa, Y. (1988).Biochim. Biophys. Acta 933, 141–155.

    PubMed  Google Scholar 

  • Oosawa, F., and Hayashi, S. (1986).Adv. Biophys. 22, 151–183.

    PubMed  Google Scholar 

  • Paik, S. R., Yokoyama, K., Yoshida, M., Ohta, T., Kagawa, Y., and Allison, W. S. (1993).J. Bionerg. Biomemb. 25, 679–684.

    Google Scholar 

  • Penefsky, H. S. (1985).Proc. Natl. Acad. Sci. USA 82, 1589–1593.

    PubMed  Google Scholar 

  • Rayment, I., Rypniewskei, W. R., Schmidt-BÄse, Smith, R., Tomchick, D. R., Benning, M. M., Winkelmann, D. A., Wesenberg, G., and Holden, H. M. (1993).Science 261, 50–58.

    PubMed  Google Scholar 

  • Saika, K., and Yoshida, M. (1995).FEBS Lett. 368, 207–210.

    PubMed  Google Scholar 

  • Sato, M., Ito, Y., Harada, M., Kihara, H., Tsuruta, H., Ohta, S., and Kagawa, Y. (1995).J. Biochem. 117, 113–119.

    PubMed  Google Scholar 

  • SchÄfer, H-J., Rathgeber, G., and Kagawa, Y. (1995).FEBS Lett. 377, 408–412.

    PubMed  Google Scholar 

  • Senior, A. E. (1990).Annu. Rev. Biophys. Chem. 19, 7–41.

    Google Scholar 

  • Senter, P., Eckstein, F., and Kagawa, Y. (1983).Biochemistry 22, 5514–5518.

    Google Scholar 

  • Shirakihara, Y., Leslie, A., Abrahams, J. P., Walker, J., Ueda, T., Sekimoto, Y., Kambara, M., Saiga, K., Odaka, M., Yoshida, M., and Kagawa, Y. (1995).Proc. Jpn. Bionerg. 21, 30–31.

    Google Scholar 

  • Skulachev, V. P. (1988).Membrane Bioenergetics, Springer-Verlag, Berlin-Heidelberg, pp. 19–25.

    Google Scholar 

  • Staut, J. S., Partridge, B. E., Dibbern, D. A., and Schuster, S. M. (1993).Biochemistry 32, 7496–7502.

    PubMed  Google Scholar 

  • Steinert, K., Kroth-Panicic, P. G., and Bickel-Sandkötter, S. (1995).Biochim. Biophys. Acta 1249, 137–144.

    PubMed  Google Scholar 

  • Van Walraven, H. S., Strotmann, H., Schwarz, O., and Rumberg, B. (1996).FEBS Lett. 379, 309–313.

    PubMed  Google Scholar 

  • Vik, S. B., and Antonio, B. J. (1994).J. Biol. Chem. 269, 30364–30369.

    PubMed  Google Scholar 

  • Yanagida, T., and Ishijima, A. (1995).Biophys. J. 69, 312s-315s.

    Google Scholar 

  • Yohda, M., Kagawa, Y., and Yoshida, M. (1986).Biochim. Biophys. Acta 850, 429–435.

    Google Scholar 

  • Yohda, M., Ohta, S., Hisabori, T., and Kagawa, Y. (1988).Biochim. Biophys. Acta 833, 156–164.

    Google Scholar 

  • Zhang, Y., and Fillingame, R. H. (1995).J. Biol. Chem. 270, 24609–24614.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagawa, Y., Hamamoto, T. The energy transmission in ATP synthase: From the γ-c rotor to the α3β3 oligomer fixed by OSCP-b stator via the βDELSEED sequence. J Bioenerg Biomembr 28, 421–431 (1996). https://doi.org/10.1007/BF02113984

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02113984

Key words

Navigation