Skip to main content
Log in

A multivariate study of the relationship between the genetic code and the physical-chemical properties of amino acids

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The 20 naturally occurring amino acids are characterized by 20 variables: pKNH 2, pKCOOH, pI, molecular weight, substituent van der Waals volume, seven1H and13C nuclear magnetic resonance shift variables, and eight hydrophobicity-hydrophilicity scales. The 20-dimensional data set is reduced to a few new dimensions by principal components analysis. The three first principal components reveal relationships between the properties of the amino acids and the genetic code. Thus the amino acids coded for by adenosine (A), uracil (U), or cytosine (C) in their second codon position (corresponding to U, A, or G in the second anticodon position) are grouped in these components. No grouping was detected for the amino acids coded for by guanine (G) in the second codon position (corresponding to C in the second anticodon position). The results show that a relationship exists between the physical-chemical properties of the amino acids and which of the A (U), U (A), or C (G) nucleotide is used in the second codon (anticodon) position. The amino acids coded for by G (C) in the second codon (anticodon) position do not participate in this relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboderin AA (1971) An empirical hydrophobicity scale for α-aminoacids and some of its applications. Int J Biochem 2:537–544

    Article  Google Scholar 

  • CRC Handbook of Biochemistry (1968) CRC Press, Boca Raton, Florida

  • Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379

    Article  PubMed  Google Scholar 

  • Dunn WJ III, Wold S (1980) Structure-activity analyzed by pattern recognition: the asymmetric case. J Med Chem 23:595–599

    Article  PubMed  Google Scholar 

  • Fauchère J-L, Pliška V (1983) Hydrophobic parameters π of amino acid side chains from partitioning of N-acetyl amino acid amides. Eur J Med Chem 18:369–375

    Google Scholar 

  • Hellberg S, Sjöström M, Wold S (in press) The prediction of bradykinin potentiating potency of pentapeptides. An example of peptide quantitative-structure-activity relationship. Acta Chem Scand B

  • Horsley W, Sternlicht H, Cohen JS (1970) Carbon-13 magnetic resonance studies of amino acids and peptides. II. J Am Chem Soc 92:680–686

    Article  Google Scholar 

  • Janin J (1979) Surface and inside volumes in globular proteins. Nature 277:491–492

    Article  PubMed  Google Scholar 

  • Jukes TH (1978) The amino acid code. Adv Enzymol 47:375–432

    PubMed  Google Scholar 

  • Jungck JR (1978) The genetic code as a periodic table. J Mol Evol 11:211–224

    Article  PubMed  Google Scholar 

  • Kaiser ET, Kézdy FJ (1984) Amphiphilic secondary structure: design of peptide hormones. Science 223:249–255

    PubMed  Google Scholar 

  • Labouygues JM, Figureau A (1982) L'Origine et l'évolution du code génétique. Rev Can Biol Exp 41:209–216

    PubMed  Google Scholar 

  • Lacey JC Jr, Mullins DW Jr (1983) Experimental studies related to the origin of the genetic code and the process of protein synthesis: a review. Orig Life 13:3–42

    Article  PubMed  Google Scholar 

  • Lindberg W, Persson J-Å, Wold S (1983) Partial least squares method for spectrofluorimetric analysis of mixtures of humic acids and ligninsulfonates. Anal Chem 55:643–648

    Google Scholar 

  • Malinowski ER, Howery DG (1980) Factor analysis in chemistry. John Wiley & Sons, New York

    Google Scholar 

  • Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic Press, London

    Google Scholar 

  • Merck Index, 9th ed (1977) Merck & Co, Rahway, New Jersey

  • Nagyvary J, Fendler JH (1974) Origin of the genetic code: a physical chemical model of primitive codon assignments. Orig Life 5:357–362

    Article  PubMed  Google Scholar 

  • Ninio J (1983) L'Explosion des séquences: les années folles 1980–1990. Biochem Syst Ecol 11:305–313

    Article  Google Scholar 

  • Nozaki Y, Tanford C (1971) The solubility of amino acids and the glycine peptides in aqueous ethanol and dioxane solution. J Biol Chem 246:2211–2217

    PubMed  Google Scholar 

  • Pliška V, Schmidt M, Fauchère J-L (1981) Partition coefficients of amino acids and hydrophobic parameters π of side chains as measured by thinlayer chromatography. J Chromatogr 216:79–92

    Article  Google Scholar 

  • Reuben J, Polk FE (1980) Nucelotide-amino acid interactions and their relation to the genetic code. J Mol Evol 15:103–112

    PubMed  Google Scholar 

  • Roberts, GCK, Jardetzky O (1970) Nuclear magnetic resonance spectroscopy of amino acids, peptides, and proteins. Adv Protein Chem 24:447–545

    PubMed  Google Scholar 

  • Rosenthal SN, Fendler JH (1976)13C nmr spectroscopy in macromolecular systems of biochemical interest. Adv Protein Chem 13:279–424

    Google Scholar 

  • Rowe, GW, Szabo VL, Trainor LEH (1984) Cluster analysis of genes in codon space. J Mol Evol 20:167–174

    PubMed  Google Scholar 

  • Seydel JK, Schaper KJ (1979) Chemische Structur und biologische Aktivität von Wirkstoffen. Verlag Chemie, Weinheim

    Google Scholar 

  • Shimizu M (1982) Molecuar basis for the genetic code. J Mol Evol 18:297–303

    Article  PubMed  Google Scholar 

  • Sjöström M, Kowalski BR (1979) A comparison of five pattern recognition methods based on the classification results from six real data bases. Anal Chim Acta 112:11–30

    Google Scholar 

  • Sjöström M, Söderström B, Wold S (1985) PLS discriminant plots. In: Gelsema ED, Kanal LN (eds) Pattern recognition in practice II. North-Holland Publishing Company (in press)

  • Sneath PHA (1966) Relations between the structure and biological activity in peptides. J Theor Biol 12:157–195

    Article  PubMed  Google Scholar 

  • Swanson R (1984) A unifying concept for the genetic code. Bull Math Biol 46:187–203

    Article  PubMed  Google Scholar 

  • Varmuza K (1980) Pattern recognition in chemistry. In: Berthier G, et al. (eds) Lecture notes in chemistry 21. Springer-Verlag, Berlin

    Google Scholar 

  • Weber AL, Lacey JC Jr (1978) Genetic code correlations:amino acids and their anticodon nucleotides. J Mol Evol 11:199–210

    Article  PubMed  Google Scholar 

  • Woese CR, Dugre DH, Saxinger WC, Dugre SA (1966) The molecular basis for the genetic code. Proc Natl Acad Sci USA 55:966–974

    PubMed  Google Scholar 

  • Wold S (1976) Pattern recognition by means of disjoint principal components models. Pattern Recognition 8:127–139

    Article  Google Scholar 

  • Wold S (1978) Cross validatory estimation of the number of components in factor and principal components models. Technometrics 20:397–405

    Google Scholar 

  • Wold S, Sjöström M (1977) SIMCA: a method for analyzing chemical data in terms of similarity and analogy. In: Kowalski BR (ed) Chemometrics: theory and application. American Chemical Society, Washington DC, pp 243–282 (ACS symposium series no 52)

    Google Scholar 

  • Wold S, Albano C, Dunn WJ III, Edlund U, Esbendsen K, Geladi P, Hellberg S, Johansson E, Lindberg W, Sjöström M (1984) Multivariate data analysis in chemistry. In: Kowalski BR (ed) Chemometric—mathematics and statistics in chemistry. Reidel, Dordrecht, pp 17–96 (NATO ASI series C: mathematical and physical sciences, no 138)

    Google Scholar 

  • Wolfenden R, Andersson L, Cullis PM, Southgate CCB (1981) Affinities of amino acid side chains for solvent water. Biochemistry 20:849–855

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjöström, M., Wold, S. A multivariate study of the relationship between the genetic code and the physical-chemical properties of amino acids. J Mol Evol 22, 272–277 (1985). https://doi.org/10.1007/BF02099756

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099756

Key words

Navigation