Skip to main content
Log in

Bohm trajectory and Feynman path approaches to the “Tunneling time problem”

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A comparison is made between the Bohm trajectory and Feynman path approaches to the long-standing problem of determining the average lime taken for a particle described by the Schrödinger wave function ψ to tunnel through a potential barrier. The former approach follows simply and uniquely from the basic postulates of Bohm's causal interpretation of quantum mechanics; the latter is intimately related to the most frequently cited approaches based on conventional interpretations. Emphasis is given to the fact that fundamentally different transmission (T)-reflection (R) decompositions, particlelike and wavelike respectively, are central to the two methods: ¦ψ¦2=[¦ψ¦2]T+[¦ψ¦2]R (Bohm trajectory approach); ψ=ψTR (Feynman path approach).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bohm,Phys. Rev. 85, 166 (1952); 180 (1952).

    MathSciNet  ADS  Google Scholar 

  2. D. Bohm, B. J. Hiley, and P. N. Kaloyerou,Phys. Rep. 144, 323 (1987).

    MathSciNet  ADS  Google Scholar 

  3. J. S. Bell,Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  4. D. Bohm and B. J. Hiley,The Undivided Universe: An Ontological Interpretation of Quantum Mechanics (Routledge, London, 1993).

    Google Scholar 

  5. P. R. Holland,The Quantum Theory of Motion (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  6. D. Dürr, S. Goldstein, and N. Zanghi,Phys. Lett. A 172, 6 (1992).

    MathSciNet  ADS  Google Scholar 

  7. D. Dürr, S. Goldstein, and N. Zanghí,J. Stat. Phys. 67, 843 (1992).

    MATH  ADS  Google Scholar 

  8. A. Valentini,Phys. Lett. A 156, 5 (1991);158, 1 (1991).

    MathSciNet  ADS  Google Scholar 

  9. S. Brouard, R. Sala, and J. G. Muga,Phys. Rev. A 47, 4312 (1994).

    ADS  Google Scholar 

  10. E. H. Hauge and J. A. Støvneng,Rev. Mod. Phys. 61, 917 (1989).

    ADS  Google Scholar 

  11. M. Büttiker, “Traversal, reflection, and dwell times for quantum tunneling,”Electronic Properties of Multilayers Low-Dimensional Semiconductor Structures, J. M. Chamberlain, L. Eaves, and J. C. Portal, eds. (Plenum, New York. 1990), p. 297.

    Google Scholar 

  12. D. Sokolovski and J. N. L. Connor,Phys. Rev. A 42, 6512 (1990).

    ADS  Google Scholar 

  13. C. R. Leavens and G. C. Aers, “Tunneling times for one-dimensional barriers,”Scanning Tunneling Microscopy and Related Methods, R. J. Behm, N. García, and H. Rohrer, eds. (Kluwer, Dordrecht, 1990), p. 59.

    Google Scholar 

  14. A. P. Jauho, “Tunneling times in semiconductor heterostructures: A critical review,”Hot Carriers in Semiconductor Nanostructures—Physics and Applications, J. Shah, ed. (Academic, New York. 1992), p. 121.

    Google Scholar 

  15. M. Jonson, “Tunneling Times in Quantum Mechanical Tunneling.”Quantum Transport in Semiconductors, D. K. Ferry and C. Jacoboni, eds. (Plenum, New York, 1992).

    Google Scholar 

  16. R. Landauer,Ber. Bunsenges. Phys. Chem. 95, 404 (1991).

    Google Scholar 

  17. R. Landauer and Th. Martin.Rev. Mod. Phys. 66, 217 (1994).

    ADS  Google Scholar 

  18. C. R. Leavens and G. C. Aers, “Bohm trajectories and the tunneling time problem.”Scanning Tunneling Microscopy III, R. Wiesendanger and H.-J. Güntherodt. eds. (Springer, Berlin. 1993), p. 105.

    Google Scholar 

  19. R. P. Feynman,Rev. Mod. Phys. 20, 367 (1948).

    MathSciNet  ADS  Google Scholar 

  20. R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    MATH  Google Scholar 

  21. L. S. Schulman,Techniques and Applications of Path Integration (Wiley, New York, 1981).

    MATH  Google Scholar 

  22. D. Sokolovski and L. M. Baskin,Phys. Rev. A 36, 4604 (1987).

    ADS  Google Scholar 

  23. H. Salecker and E. P. Wigner,Phys. Rev. 109, 571 (1958).

    MATH  MathSciNet  ADS  Google Scholar 

  24. A. Peres,Am. J. Phys. 48, 552 (1980).

    MathSciNet  ADS  Google Scholar 

  25. P. C. W. Davies,J. Phys. A: Math. Gen. 19, 2115 (1986).

    ADS  Google Scholar 

  26. C. R. Leavens,Solid State Comm. 86, 781 (1993).

    ADS  Google Scholar 

  27. C. R. Leavens,Solid State Comm. 68, 13 (1988);68, ii (1988).

    ADS  Google Scholar 

  28. H. A. Fertig,Phys. Rev. Lett. 65, 2321 (1990).

    MATH  MathSciNet  ADS  Google Scholar 

  29. D. Sokolovski and J. N. L. Connor,Phys. Rev. A 44, 1500 (1991).

    ADS  Google Scholar 

  30. H. A. Fertig,Phys. Rev. B 47, 1346 (1993).

    ADS  Google Scholar 

  31. D. Sokolovski and J. N. L. Connor,Phys. Rev. A 47, 4677 (1993).

    ADS  Google Scholar 

  32. Private communications with several individuals.

  33. C. R. Leavens,Phys. Lett. A 178, 27 (1993).

    ADS  Google Scholar 

  34. Y. Aharonov and M. Vardi,Phys. Rev. D 21, 2235 (1980).

    MathSciNet  ADS  Google Scholar 

  35. J. G. Muga, S. Brouard, and R. Sala,Phys. Lett. A 167, 24 (1992);J. Phys.: Condens. Matter- 4, L579 (1992); S. Brouard. R. Sala, and J. G. Muga.Europhys. Lett. 22, 159 (1993).

    ADS  Google Scholar 

  36. B. A. von Tiggelen, A. Tip, and A. Lagendijk,J. Phys. A 26, 1731 (1993).

    ADS  Google Scholar 

  37. W. R. McKinnon and C. R. Leavens,Phys. Rev. A. to be published.

  38. L. S. Schulman and R. W. Ziolkowski, “Path integral asymptotics in the absence of classical paths.”Path Integrals From meV to MeV. V. Sa-yakanit, W. Sritrakool, J. O. Berananda, M. C. Gutzwiller, A. Inomata, S. Lundqvist, J. R. Klauder, and L. Schulman, eds. (World Scientific. Singapore, 1989).

    Google Scholar 

  39. D. Sokolovski and J. N. L. Connor,Solid Slate Comm. 89, 475 (1994).

    ADS  Google Scholar 

  40. G. Lannaccone and B. Pellegrini,Phys. Rev. B 49, 16548 (1994).

    ADS  Google Scholar 

  41. C. R. Leavens,Solid Slate Comm. 68, 13 (1988);68, 11 (1988).

    ADS  Google Scholar 

  42. W. Mückenheim,Phys. Rep. 133, 337 (1986).

    MathSciNet  ADS  Google Scholar 

  43. D. Sokolovski, S. Brouard, and J. N. L. Connor,Phys. Rev. A 50, 1240 (1994).

    ADS  Google Scholar 

  44. C. Foden and K. W. H. Stevens,IBM J. Res. Dev. 32, 99 (1988).

    Article  Google Scholar 

  45. A. I. Baz,Sov. J. Nucl. Phys. 4, 182 (1967);5, 161 (1967).

    Google Scholar 

  46. C. R. Leavens,Phys. Lett. A 197, 88 (1995).

    MATH  MathSciNet  ADS  Google Scholar 

  47. C. R. Leavens and W. R. McKinnon,Phys. Lett. A 194, 12 (1994).

    Article  ADS  Google Scholar 

  48. G. Iannaccone, C. R. Leavens, and W. R. McKinnon, unpublished.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leavens, C.R. Bohm trajectory and Feynman path approaches to the “Tunneling time problem”. Found Phys 25, 229–268 (1995). https://doi.org/10.1007/BF02055206

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02055206

Keywords

Navigation