Skip to main content
Log in

Analysis of quantum decay law: is quantum tunneling really exponential?

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The exponential decay law is well established since its first derivation in 1928; however, it is not exact but only an approximate description. In recent years some experimental and theoretical indications for non-exponential decay have been documented. First we solve analytically the time-dependent Schrödinger equation in one dimension for a potential consisting of an infinite wall plus a rectangular barrier with finite width and also a cut harmonic oscillator potential by considering it as a sequence of square potentials. Then using the staggered Leap-Frog method, we solve the time-dependent Schrödinger equation for the cut harmonic oscillator potential. In both methods, time dependence of the survival probability of the particle and the decay parameter \( \lambda \) are analyzed. The results exhibit non-exponential behavior for survival probability at short and intermediate times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

No Data associated in the manuscript.

References

  1. G. Gamow, ZP 51, 204 (1928)

    Article  Google Scholar 

  2. G. Andersson, B. Suri, L. Guo, T. Aref, P. Delsing, Nat. Phys. 15, 1123 (2019)

    Article  Google Scholar 

  3. J. Kumlin, K. Kleinbeck, N. Stiesdal, H. Busche, S. Hofferberth, H.P. Büchler, Phys. Rev. A 102, 63703 (2020)

    Article  ADS  Google Scholar 

  4. S.R. Wilkinson, C.F. Bharucha, M.C. Fischer, K.W. Madison, P.R. Morrow, Q. Niu, B. Sundaram, M.G. Raizen, Nature 387, 575 (1997)

    Article  ADS  Google Scholar 

  5. M. Peshkin, A. Volya, V. Zelevinsky, EPL Europhys. Lett. 107, 40001 (2014)

    Article  ADS  Google Scholar 

  6. S.F. Duki, H. Mathur, Phys. Rev. B Condens. Matter Mater. Phys. 90, 1 (2014)

    Article  Google Scholar 

  7. G. García-Calderón, R. Romo, Phys. Rev. A 93(1), 022118 (2016)

    Article  ADS  Google Scholar 

  8. E. Abrahams, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71(1), 011106 (2005)

    Article  Google Scholar 

  9. S. Longhi, Phys. Rev. Lett. 97, 10 (2006)

    Article  Google Scholar 

  10. F.H. Koppens, D. Klauser, W.A. Coish, K.C. Nowack, L.P. Kouwenhoven, D. Loss, L.M. Vandersypen, Phys. Rev. Lett. 99, 1 (2007)

    Article  Google Scholar 

  11. G. Iori, E. Marinari, G. Parisi, Europhys. Lett. (EPL) 25, 491 (1994)

    Article  ADS  Google Scholar 

  12. P.J. Aston, EPL Europhys. Lett. 97, 52001 (2012)

    Article  ADS  Google Scholar 

  13. N.G. Kelkar, M. Nowakowski, K.P. Khemchandani, Phys. Rev. C Nucl. Phys. 70, 2 (2004)

    Article  Google Scholar 

  14. A. Fierro, G. Franzese, A. de Candia, A. Coniglio, Phys. Rev. E 59, 60 (1999)

    Article  ADS  Google Scholar 

  15. A. Wyrzykowski, Acta Phys. Pol. B (2018). https://doi.org/10.5506/APhysPolB.51.2015

    Article  Google Scholar 

  16. Z.D. Chen, S.Q. Shen, Phys. Rev. B Condens. Matter Mater. Phys. 67, 124081 (2003)

    Google Scholar 

  17. Q. Guan, M.K.H. Ome, T.M. Bersano, S. Mossman, P. Engels, D. Blume, Phys. Rev. Lett. 125, 213401 (2020)

    Article  ADS  Google Scholar 

  18. A.M. Ishkhanyan, V.P. Krainov, Laser Phys. Lett. (2015). https://doi.org/10.1088/1612-2011/12/4/046002

    Article  Google Scholar 

  19. Y.A. Litvinov et al., Phys. Lett. Sect. B Nucl. Elem. Part. High Energy Phys. 664, 162 (2008)

    Google Scholar 

  20. P. Kienle et al., Phys. Lett. Sect. B Nucl. Elem. Part. High Energy Phys. 726, 638 (2013)

    Google Scholar 

  21. F. Giacosa, Found. Phys. 42, 1262 (2012)

    Article  ADS  Google Scholar 

  22. G. Lambiase, G. Papini, G. Scarpetta, Phys. Lett. Sect. B Nucl. Elem. Part. High Energy Phys. 718, 998 (2013)

    Google Scholar 

  23. F. Giacosa, Phys. Rev. A At. Mol. Opt. Phys. 88, 1–10 (2013)

    Article  Google Scholar 

  24. F. Giacosa and G. Pagliara, PoS BORMIO2012, 28 (2012). arXiv:1204.1896 [nucl-th]

  25. F. Giacosa, G. Pagliara, Quant. Matt. 2, 54 (2013). arXiv:1110.1669 [nucl-th]

    Article  Google Scholar 

  26. A. N. Ivanov and P. Kienle, (2013). arXiv:1312.5206

  27. T. Koide, F.M. Toyama, Phys. Rev. A 66, 64102 (2002)

    Article  ADS  Google Scholar 

  28. G. Lambiase, G. Papini, G. Scarpetta, Ann. Phys. 332, 143 (2012)

    Article  ADS  Google Scholar 

  29. F.C. Ozturk et al., Phys. Lett. B 797, 134800 (2019)

    Article  Google Scholar 

  30. A. Gal, Symmetry (2016). https://doi.org/10.3390/sym8060049

    Article  Google Scholar 

  31. V. Krainov, Sov. J. Exp. Theor. Phys. 115, 68 (2012)

    Article  ADS  Google Scholar 

  32. M. Peshkin, Phys. Rev. C 91, 42501 (2015)

    Article  ADS  Google Scholar 

  33. S.-J. Rong, Q.-Y. Liu, Modern Phys. Lett. A 27, 1250093 (2012)

    Article  ADS  Google Scholar 

  34. F. Giraldi, Eur. Phys. J. D (2019). https://doi.org/10.1140/epjd/e2019-100219-0

    Article  Google Scholar 

  35. M. Hosseini, S. Alavi, Ann. Phys. 410, 167936 (2019)

    Article  Google Scholar 

  36. A.N. Petridis, L.P. Staunton, J. Vermedahl, M. Luban, J. Modern Phys. 2010, 124 (2010)

    Article  Google Scholar 

  37. S.A. Alavi, C. Giunti, EPL Europhys. Lett. 109, 60001 (2015)

    Article  ADS  Google Scholar 

  38. C. Rothe, S.I. Hintschich, A.P. Monkman, Phys. Rev. Lett. 96, 163601 (2006)

    Article  ADS  Google Scholar 

  39. P. Facchi, S. Pascazio, J. Phys. A Math. Theor. 41, 493001 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Francesco Giacosa for his comments to improve this manuscript. S. A. Alavi is highly delighted and thankful of INFN, Turin and specially Carlo Giunti. It was there that the initial spark of this work was ignited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Alavi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini-Ghalehni, M.S., Azadegan, B. & Alavi, S.A. Analysis of quantum decay law: is quantum tunneling really exponential?. Eur. Phys. J. Plus 137, 1326 (2022). https://doi.org/10.1140/epjp/s13360-022-03525-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03525-6

Navigation