Skip to main content
Log in

Effects of potassium-free media and ouabain on epithelial cell composition in toad urinary bladder studied with X-ray microanalysis

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The technique of X-ray microanalysis was used to study the composition of toad urinary bladder epithelial cells incubated in Na Ringer's and K-free medium, with and without ouabain. Following incubation under short-circuit conditions, portions of tissue were coated with an external albumin standard and plunge-frozen. Cryosections were freeze-dried and analyzed. In Na Ringer's, granular and basal cells, and also the basal portion of the goblet cells, had similar water and ion compositions. In contrast, mitochondria-rich cells contained less Cl and Na. On average, the granular cells and a subpopulation of the basal cells lost K and gained Na after ouabain and in K-free medium alone. However, there was considerable variation from cell to cell in the responses, indicating differences between cells in the availabilities of ion pathways, either as a consequence of differences in the numbers of such pathways or in their control. In contrast, the compositions of both the low Cl, mitochondria-rich cells and a sub-population of the basal cells were little affected by the different incubation conditions. This is consistent with a comparatively low Na permeability of these cells. The results also indicate that (i) much, if not all, of the K in the dominant cell type, the granular cells, is potentially exchangeable with serosal medium Na, and (ii) Na is accumulated from the serosal medium under K-free conditions. They also provide information about the role of the (Na−K)-ATPase in the maintenance of cellular K in K-free medium, being consistent with other evidence that removal of serosal medium K inhibits transepithelial Na transport by decreasing Na entry to the cells from the mucosal medium, rather than solely by inhibiting the basolateral membrane (Na−K)-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bobrycki, V.A., Mills, J.W., Macknight, A.D.C., DiBona, D.R. 1981. Structural responses to voltage clamping in the toad urinary bladder: I. The principal role of granular cells in active transport of sodium.J. Membrane Biol. 60:21–33

    Article  Google Scholar 

  • Canessa, M., Labarca, P., Leaf, A. 1976. Metabolic evidence that serosal sodium does not recycle through the active transepithelial transport pathway of toad bladder.J. Membrane Biol. 30:65–77

    Article  Google Scholar 

  • Chase, H.S., Jr., Al-Awqati, Q. 1979. Removal of ambient K+ inhibits net Na+ transport in toad bladder by reducing Na+ permeability of the luminal border.Nature 281:494–495

    Article  PubMed  Google Scholar 

  • Chase, H.S., Jr., Al-Awqati, Q. 1983. Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder.J. Gen. Physiol. 81:643–665

    PubMed  Google Scholar 

  • Choi, J.K. 1963. The fine structure of the urinary bladder of the toad,Bufo marinus.J. Cell Biol. 16:53–72

    PubMed  Google Scholar 

  • Civan, M.M. 1981. Intracellular potassium in toad urinary bladder: The recycling hypothesis.In: Epithelial Ion and Water Transport. A.D.C. Macknight and J.P. Leader, editors. pp. 107–116. Raven, New York

    Google Scholar 

  • Civan, M.M., Hall, T.A., Gupta, B.L. 1980. Microprobe study of toad urinary bladder in the absence of serosal K+.J. Membrane Biol. 55:187–202

    Article  Google Scholar 

  • Civan, M.M., Shporer, M. 1989. Physical state of cell sodium.Curr. Topics Membr. Transp. 34:1–19

    Google Scholar 

  • Cox, T.C. 1988. Potassium dependence of sodium transport in frog skin.Biochim. Biophys. Acta 942:169–178

    PubMed  Google Scholar 

  • Davis, W.L., Jones, R.G., Hagler, H.K., Farmer, G.R., Goodman, D.P.G. 1987. Histochemical and elemental localization of calcium in the granular cell subapical granules of the amphibian urinary bladder epithelium.Anat. Rec. 218:229–236

    Article  PubMed  Google Scholar 

  • DeLong, J., Civan, M.M. 1983. Microelectrode study of K+ accumulation by tight epithelia: I. Baseline values of split frog skin and toad urinary bladder.J. Membrane Biol. 72:183–193

    Article  Google Scholar 

  • DiBona, D.R. 1978. Direct visualization of epithelial morphology in the living amphibian urinary bladder.J. Membrane Biol. Special Issue:45–70

    Google Scholar 

  • DiBona, D.R., Civan, M.M., Leaf, A. 1969. The anatomic site of the transepithelial permeability barriers of toad bladder.J. Cell Biol. 40:1–7

    PubMed  Google Scholar 

  • Donaldson, P.J., Leader, J.P., Macknight, A.D.C. 1987. Membrane potentials in toad urinary bladder epithelial cells.Fed Proc. 46:1269 (Abstr.)

    Google Scholar 

  • Dörge, A., Wienecke, P., Beck, F., Wörndl, B., Rick, R., Thurau, K. 1988. Na transport compartment in rabbit urinary bladder.Pfluegers Arch. 411:681–687

    Article  Google Scholar 

  • Essig, A., Leaf, A. 1963. The role of potassium in active transport of sodium by the toad urinary bladder.J. Gen Physiol. 46:505–515

    Article  Google Scholar 

  • Frizzell, R.A., Jennings, B. 1977. Potassium influx across basolateral membranes of rabbit colon: Relation to sodium absorption.Fed. Proc. 36:360 (Abstr.).

    Google Scholar 

  • Fuchs, H., Fuchs, W. 1981. Foqus: A Fortran progam for the quantitative analysis of X-ray spectra from thin biological specimens.Scan. Electron Microsc. 2:377–394

    Google Scholar 

  • Garty, H. 1984. Amiloride blockable sodium fluxes in toad bladder membrane vesicles.J. Membrane Biol. 82:269–279

    Article  Google Scholar 

  • Garty, H., Asher, C. 1985. Ca2+-dependent, temperature-sensitive regulation of Na+ channels in tight epithelia. A study using membrane vesicles.J. Biol. Chem. 260:8330–8335

    PubMed  Google Scholar 

  • Garty, H., Warncke, J., Lindemann, B. 1987. An amiloride-sensitive Na+ conductance in the basolateral membrane of toad urinary bladder.J. Membrane Biol. 95:91–103

    Article  Google Scholar 

  • Harvey, B., Ehrenfeld, J. 1988. Role of Na+/H+ exchange in the control of intracellular pH and cell membrane conductances in frog skin epithelium.J. Gen Physiol. 92:793–810

    Article  PubMed  Google Scholar 

  • Heinrich, K.F.J. 1982. The accuracy of quantitation in X-ray microanalysis, particularly in biological specimens.Scan. Electron Microsc. 7:281–187

    Google Scholar 

  • Herrera, F.C. 1968. Bio-electric properties and ionic content in toad bladder.J. Gen. Physiol. 51:261s-270s

    Article  PubMed  Google Scholar 

  • Jehl, B., Bauer, R., Dörge, A., Rick, R. 1981. The use of propane/ isopentane mixtures for rapid freezing of biological specimens.J. Microsc. 123:307–309

    PubMed  Google Scholar 

  • Kraehenbuhl, J.P., Pfeiffer, J., Rossier, M., Rossier, B.C. 1979. Microfilament-rich cells in the toad bladder epithelium.J. Membrane Biol. 48:167–180

    Article  Google Scholar 

  • Lewis, S.A., Butt, A.G., Bowler, J.M., Leader, J.P., Macknight, A.D.C. 1985. Effects of anions on cellular volume and transepithelial Na+ transport across toad urinary bladder.J. Membrane Biol. 83:119–137

    Article  Google Scholar 

  • Lewis, S.A., Wills, N.K., Eaton, D.C. 1978. Basolateral membrane potential of a tight epithelium: Ionic diffusion and electrogenic pumps.J. Membrane Biol. 41:117–148

    Article  Google Scholar 

  • Lichtenstein, N.S., Leaf, A. 1965. Effect of amphotericin B on the permeability of the toad bladder.J. Clin. Invest. 44:1328–1342

    PubMed  Google Scholar 

  • Macknight, A.D.C. 1977. Contribution of mucosal chloride to chloride in toad bladder epithelial cells.J. Membrane Biol. 36:55–63

    Article  Google Scholar 

  • Macknight, A.D.C. 1990. Ion and water transport in urinary bladder epithelia.In: Handbook of Physiology, Renal Physiology. E.E. Windhager, editor. American Physiological Society, Bethesda (in press)

    Google Scholar 

  • Macknight, A.D.C., Civan, M.M., Leaf, A. 1975a. The sodium transport pool in toad urinary bladder epithelial cells.J. Membrane Biol. 20:365–386

    Article  Google Scholar 

  • Macknight, A.D.C., Civan, M.M., Leaf, A. 1975b. Some effects of ouabain on cellular ions and water in epithelial cells of toad urinary bladder.J. Membrane Biol. 20:387–401

    Article  Google Scholar 

  • Macknight, A.D.C., DiBona, D.R., Leaf, A. 1980. Sodium transport across toad urinary bladder; A model tight epithelium.Physiol. Rev. 60:615–715

    PubMed  Google Scholar 

  • Macknight, A.D.C., DiBona, D.R., Leaf, A., Civan, M.M. 1971. Measurement of the composition of epithelial cells from the toad urinary bladder.J. Membrane Biol. 6:108–126.

    Article  Google Scholar 

  • Macknight, A.D.C., McLaughlin, C.W. 1977. Transepithelial sodium transport and CO2 production by the toad urinary bladder in the absence of serosal sodium.J. Physiol. 269:767–776

    PubMed  Google Scholar 

  • Mills, J.W., Ernst, S.A. 1975. Localization of sodium pump sites in frog urinary bladder.Biochim. Biophys. Acta 375:268–237

    PubMed  Google Scholar 

  • Nagel, W., van Driessche, W. 1989. Intracellular potentials of toad urinary bladder.Pfluegers Arch. 415:121–123

    Article  Google Scholar 

  • Nellans, H.N., Schultz, S.G. 1976. Relations among transepithelial sodium transport, potassium exchange and cell volume in rabbit ileum.J. Gen. Physiol. 68:441–464

    PubMed  Google Scholar 

  • Pak Poy, R.F.K., Bentley, P.J. 1960. Fine structure of the epithelial cells of the toad urinary bladder.Exp. Cell Res. 20:235–237

    Article  PubMed  Google Scholar 

  • Peachey, L.D., Rasmussen, H. 1961. Structure of the toad's urinary bladder as related to its physiology.J. Biophys. Biochem. Cytol. 10:529–553

    PubMed  Google Scholar 

  • Rick, R., DiBona, D.R. 1987. Intracellular solute gradients during osmotic water flow: An electron-microprobe analysis.J. Membrane Biol. 96:85–94

    Article  Google Scholar 

  • Rick, R., Dörge, A., Arnim, E. von, Thurau, K. 1978a. Electron microproble analysis of frog skin epithelium: Evidence for a syncytial Na transport compartment.J. Membrane Biol. 39:313–331

    Article  Google Scholar 

  • Rick, R., Dörge, A., Macknight, A.D.C., Leaf, A., Thurau, K. 1978b. Electron microprobe analysis of the different epithelial cells of toad urinary bladder: Electrolyte concentrations at different functional states of transepithelial sodium transport.J. Membrane Biol. 39:257–271

    Article  Google Scholar 

  • Rick, R., Dörge, A., Thurau, K. 1982. Quantitative analysis of electrolytes in frozen dried sections.J. Microsc. 125:239–247

    PubMed  Google Scholar 

  • Rick, R., Spancken, G., Dörge, A. 1988. Differential effects of aldosterone and ADH on intracellular electrolytes in the toad urinary bladder epithelium.J. Membrane Biol. 101:275–282

    Article  Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976a. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder: I. Effects of different medium potassium concentrations on electrical parameters.J. Membrane Biol. 26:217–238

    Article  Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976b. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder: II. Effects of different medium potassium concentrations on epithelial cell composition.J. Membrane Biol. 26:239–268

    Article  Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976c. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder: III. Exchangeability of epithelial cellular potassium.J. Membrane Biol. 26:269–286

    Article  Google Scholar 

  • Sauer, M., Dörge, A., Thurau, K., Beck, F.X. 1989. Effect of ouabain on the electrolyte concentrations in principal and intercalated cells of the isolated perfused cortical collecting duct.Pfluegers Arch. 413:651–655

    Article  Google Scholar 

  • Sokal, R.R., Rohlf, F.J. 1981. Biometry. (2nd ed.) Freeman, New York

    Google Scholar 

  • Wade, J.B. 1978. Membrane structural specialization of the toad urinary bladder revealed by the freeze-fracture technique: III. Location, structure and vasopressin dependence of intramembrane particle arrays.J. Membrane Biol. Special Issue:281–296

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowler, J.M., Purves, R.D. & Macknight, A.D.C. Effects of potassium-free media and ouabain on epithelial cell composition in toad urinary bladder studied with X-ray microanalysis. J. Membrain Biol. 123, 115–132 (1991). https://doi.org/10.1007/BF01998083

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01998083

Key Words

Navigation