Skip to main content
Log in

The sodium transport pool in toad urinary bladder epithelial cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The sodium which equilibrates with24Na in epithelial cells of toad urinary bladders has been determined. With sodium Ringer's bathing both mucosal and serosal surfaces,24Na in the mucosal medium equilibrated with about 35 mmoles cellular sodium/kg cellular dry weight, representing about 20% of the total cellular sodium determined flame photometrically;24Na in the serosal medium equilibrated with 120 mmoles cellular sodium/kg cellular dry weight, about 80% of the total cellular sodium. With24Na in both media all cellular sodium was labeled within 30 min. In the absence of serosal sodium, total cellular sodium and that sodium which equilibrated with mucosal24Na in sodium Ringer's were both similar to the cellular sodium of mucosal origin which had been determined in epithelial cells exposed on both surfaces to sodium Ringer's. Sodium-free mucosal medium, and sodium Ringer's containing amiloride 10−4 or 10−3 m in the mucosal medium, both virtually completely inhibited transepithelial sodium transport. But, whereas the cellular sodium of mucosal origin fell to only 2 mmoles/kg cellular sodium was found whether amiloride was present before, or only after, exposure of tissue to mucosal24Na. Rapid washing of the mucosal surface of hemibladders just before removal of epithelial cells for analysis removed most of this sodium labeled in the presence of amiloride, suggesting that the cellular sodium of mucosal origin consists of at least two fractions with only about two-thirds truly intracellular. The sodium transport pool measured directly in these experiments is appreciably smaller than any previous estimates of pool size all of which have been obtained by indirect techniques involving use of whole hemibladders rather than epithelial cells alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aceves, J., Erlij, D. 1971. Sodium transport across the isolated epithelium of frog skin.J. Physiol. 212:195

    Google Scholar 

  • Al-Awqati, Q., Leaf, A., Macknight, A. D. C., Civan, M. M. 1972. Intracellular composition and transepithelial transport: Inulin as a potential source of experimental error.J. Clin. Invest. 51,Amer. Soc. Clin. Invest., Abstr. 6

  • Bentley, P. J. 1968. Amiloride: A potent inhibitor of sodium transport across the toad bladder.J. Physiol. 195:317

    Google Scholar 

  • Cereijido, M., Rabito, C. A., Rodriguez Boulan, E., Rotunno, C. A. 1974. The sodiumtransporting compartment of the epithelium of frog skin.J. Physiol. 237:555

    Google Scholar 

  • Cereijido, M., Rotunno, C. A. 1967. Transport and distribution of sodium across frog skin.J. Physiol. 190:481

    Google Scholar 

  • Coplon, N. S., Maffly, R. H. 1972. The effect of ouabain on sodium transport and metabolism of the toad bladder.Biochim. Biophys. Acta 282:250

    Google Scholar 

  • Crabbé, J., de Weer, P. 1969. Relevance of sodium transport pool measurements in toad bladder tissue for the elucidation of the mechanism whereby hormones stimulate active sodium transport.Pflüg. Arch. Ges. Physiol. 313:197

    Google Scholar 

  • Diamond, J. M. 1968. Transport mechanisms in the gallbladder.In: Handbook of Physiology, Alimentary Canal, Vol. 5. C. F. Code, editor. p. 2451. Williams & Wilkins, Baltimore

    Google Scholar 

  • Diamond, J. M. 1971. Water-solute coupling and ion selectivity in epithelia.Phil. Trans. (B) 262:141

    Google Scholar 

  • DiBona, D. R., Civan, M. M., Leaf, A. 1969. The anatomic site of the transepithelial permeability barriers of toad bladder.J. Cell. Biol. 40:1

    Google Scholar 

  • Finn, A. L., Handler, J. S., Orloff, J. 1966. Relation between toad bladder potassium content and permeability response to vasopressin.Amer. J. Physiol. 210:1279

    Google Scholar 

  • Finn, A. L., Rockoff, M. L. 1971. The kinetics of sodium transport in the toad bladder. I. Determination of the transport pool.J. Gen. Physiol. 57:326

    Google Scholar 

  • Frazier, H. S., Dempsey, E. F., Leaf, A. 1962. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin.J. Gen. Physiol. 45:529

    Google Scholar 

  • Gatzy, J. T. 1971. The effect of K+-sparing diuretics on ion transport across the excised toad bladder.J. Pharmacol. Exp. Ther. 176:580

    Google Scholar 

  • Herrera, F. C. 1966. Action of ouabain on sodium transport in the toad urinary bladder.Amer. J. Physiol. 210:980

    Google Scholar 

  • Herrera, F. C. 1968. Action of ouabain on bioelectric properties and ion content in toad urinary bladder.Amer. J. Physiol. 215:183

    Google Scholar 

  • Kaye, G. I., Wheeler, H. O., Whitlock, R. T., Lane, N.. 1966. Fluid transport in the rabbit gallbladder.J. Cell Biol. 30:237

    Google Scholar 

  • Leaf, A.. 1965. Transepithelial transport and its hormonal control in toad bladder.Ergebn. Physiol. Biol. Chem. Exp. Pharm. 56:216

    Google Scholar 

  • Leaf, A. 1966. On the functional structure of the transport system in the toad bladder.Proc. 3rd Int. Congr. Nephrol., Washington. Vol. 1. p. 18. Karger, Basel/New York

    Google Scholar 

  • Leaf, A., Anderson, J., Page, L. B. 1958. Active sodium transport by the isolated toad bladder.J. Gen. Physiol. 41:657

    Google Scholar 

  • Machen, T. E., Diamond, J. M. 1969. An estimate of the salt concentration in the lateral intercellular spaces of rabbit gall-bladder during maximal fluid transport.J. Membrane Biol. 1:194

    Google Scholar 

  • Macknight, A. D. C., Civan, M. M., Leaf, A. 1975. Some effects of ouabain on cellular ions and water in epithelial cells of toad urinary bladder.J. Membrane Biol. 20:387

    Google Scholar 

  • Macknight, A. D. C., DiBona, D. R., Leaf, A., Civan, M. M. 1971. Measurement of the composition of epithelial cells from the toad urinary bladder.J. Membrane Biol. 6:108

    Google Scholar 

  • Macknight, A. D. C., Leaf, A., Civan, M. M. 1971. Effects of vasopressin on the water and ionic composition of toad bladder epithelial cells.J. Membrane Biol. 6:127

    Google Scholar 

  • Masur, S. K., Holtzman, E., Schwartz, I. L., Walter, R. 1971. Correlations between pinocytosis and hydroosmosis induced by neurohypophyseal hormones and mediated by adenosine 3′, 5′-cyclic monophosphate.J. Cell Biol. 49:582

    Google Scholar 

  • McIver, D. J. L., Macknight, A. D. C. 1974. Extracellular space in some isolated tissues.J. Physiol. 239:31

    Google Scholar 

  • Mendoza, S. A. 1972. Potassium dependence of base-line and ADH-stimulated sodium transport in toad bladder.Amer. J. Physiol. 223:120

    Google Scholar 

  • Mendoza, S. A. 1973. Sodium dependence of base-line and ADH-stimulated shortcircuit current in toad bladder.Amer. J. Physiol. 225:476

    Google Scholar 

  • Mendoza, S. A., Handler, J. S., Orloff, J. 1970. Effect of inhibitors of sodium transport on response of toad bladder to ADH and cyclic AMP.Amer. J. Physiol. 219:1440

    Google Scholar 

  • Morel, F., Leblanc, G. 1973. Kinetics of sodium and lithium accumulation in isolated frog skin epithelium.In: Transport Mechanisms in Epithelia H. H. Ussing and N. A. Thorn, editors. p. 73. Munksgaard, Copenhagen

    Google Scholar 

  • Moreno, J. H., Reisin, I. L., Rodríguez Boulan, E., Rotunno, C. A., Cereijido, M. 1973. Barriers to sodium movement across frog skin.J. Membrane Biol. 11:99

    Google Scholar 

  • Sharp, G. W. G., Coggins, C. H., Lichtenstein, N. S., Leaf, A. 1966. Evidence for a mucosal effect of aldosterone on sodium transport.J. Clin. Invest. 45:1640

    Google Scholar 

  • Sharp, G. W. G., Leaf, A. 1966. Mechanism of action of aldosterone.Physiol. Rev. 46:593

    Google Scholar 

  • Zehran, K.. 1969. Nature and localization of the sodium pool during active transport in the isolated frog skin.Acta Physiol. Scand. 77:272

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macknight, A.D.C., Civan, M.M. & Leaf, A. The sodium transport pool in toad urinary bladder epithelial cells. J. Membrain Biol. 20, 365–386 (1975). https://doi.org/10.1007/BF01870644

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870644

Keywords

Navigation