Skip to main content
Log in

Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder

II. effects of different medium potassium concentrations on epithelial cell composition

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Epithelial cells from hemibladders incubated in potassium-free sodium Ringer's serosal medium lost potassium, both in exchange for serosal sodium and with chloride and water. Cellular sodium of mucosal origin did not change. The loss of cellular potassium, chloride and water closely followed the fall in short-circuit current (SCC). One third as much potassium, chloride and water were lost in 1mm potassium serosal medium; SCC fell 1/3 as much. Potassium-free choline Ringer's serosal medium abolished the initial increase in SCC and reduced the fall in cellular potassium, chloride and water and in SCC. Ouabain (10−2 m) in potassium-free medium prevented the initial increase in SCC and the loss of cellular chloride and water. Ouabain (5×10−4 m) caused loss of cellular potassium in exchange for mucosal and serosal sodium, effects different from those of absence of serosal potassium although SCC was similarly inhibited. Sodium-free mucosal medium abolished SCC and prevented the initial transient of SCC and diminished loss of cellular potassium, chloride and water on removing serosal potassium. When serosal potassium concentration was increased considerably, cells gained potassium, chloride and water, and in 116mm potassium media, lost sodium of serosal origin. A hypothesis is advanced to explain the transients in SCC on changing serosal potassium concentration. The fall in cellular potassium, not water, probably inhibits sodium transport in media of less than 2mm potassium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bentley, P.J. 1960. The effects of vasopressin on the SCC across the wall of the isolated bladder of the toadBufo marinus.J. Endocrinol. 21:161

    Google Scholar 

  • Biber, T.U.L., Aceves, J., Mandel, L.J. 1972. Potassium uptake across serosal surface of isolated frog skin epithelium.Am. J. Physiol. 222:1366

    PubMed  Google Scholar 

  • Cereijido, M., Curran, P.F. 1965. Intracellular electrical potentials in frog skin.J. Gen. Physiol. 48:543

    PubMed  Google Scholar 

  • Davies, H.E.F., Martin, D.G., Sharp, G.W.G. 1968. Differences in the physiological characteristics of bladders of toads from different geographical sources.Biochim. Biophys. Acta 150:315

    PubMed  Google Scholar 

  • DeGraeff, J., Dempsey, E.F., Lameyer, L.D.F., Leaf, A. 1965. Phospholipids and active sodium transport in toad bladder.Biochim. Biophys. Acta 106:155

    PubMed  Google Scholar 

  • Essig, A. 1965. Active sodium transport in toad bladder despite removal of serosal potassium.Am. J. Physiol. 208:401

    PubMed  Google Scholar 

  • Essig, A., Frazier, H.S., Leaf, A. 1963. Evidence for electrogenic active sodium transport in an epithelial membrane.Nature 197:701

    PubMed  Google Scholar 

  • Essig, A., Leaf, A. 1963. The role of potassium in active transport of sodium by the toad bladder.J. Gen. Physiol. 46:505

    Google Scholar 

  • Finn, A.L. 1974. Transepithelial potential difference in toad urinary bladder is not due to ionic diffusion.Nature 250:495

    PubMed  Google Scholar 

  • Finn, A.L., Handler, J.S., Orloff, J. 1966. Relation between toad bladder potassium content and permeability response to vasopressin.Am. J. Physiol. 210:1279

    PubMed  Google Scholar 

  • Finn, A.L., Handler, J.S., Orloff J. 1967. Active chloride transport in the isolated toad bladder.Am. J. Physiol. 213:179

    PubMed  Google Scholar 

  • Frazier, H.S. 1962. The electrical potential profile of the isolated toad bladder.J. Gen. Physiol. 45:515

    PubMed  Google Scholar 

  • Frazier, H.S., Dempsey, E.F., Leaf, A. 1962. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin.J. Gen. Physiol. 45:529

    PubMed  Google Scholar 

  • Frazier, H.S., Leaf, A. 1963. The electrical characteristics of active sodium transport in the toad bladder.J. Gen. Physiol. 46:491

    PubMed  Google Scholar 

  • Hays, R.M., Leaf, A. 1961. The problem of clinical vasopressin resistance: In vitro studies.Ann. Intern. Med. 54:700

    PubMed  Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1958: The nature of the frog skin potential.Acta Physiol. Scand. 42:298

    PubMed  Google Scholar 

  • Leaf, A. 1965. Transepithelial transport and its hormonal control in toad bladder.Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 56:216

    Google Scholar 

  • Leaf, A., Hays, R.M. 1962. Permeability of the isolated toad bladder to solutes and its modification by vasopressin.J. Gen. Physiol. 45:921

    PubMed  Google Scholar 

  • Lehninger, A. 1970. Biochemistry. Worth, New York, pp. 325–326, 605–627

    Google Scholar 

  • Lipton, P. 1972. Effect of changes in osmolarity on sodium transport across isolated toad bladder.Am. J. Physiol. 222:821

    PubMed  Google Scholar 

  • Macknight, A.D.C., Civan, M.M., Leaf, A. 1975a. The sodium transport pool in toad urinary bladder epithelial cells.J. Membrane Biol. 20:365

    Google Scholar 

  • Macknight, A.D.C., Civan, M.M., Leaf, A. 1975b. Some effects of ouabain on cellular ions and water in epithelial cells of toad urinary bladder.J. Membrane Biol. 20:387

    Google Scholar 

  • Macknight, A.D.C., DiBona, D.R., Leaf, A., Civan, M.M. 1971a. Measurement of the composition of epithelial cells from the toad urinary bladder.J. Membrane Biol. 6:108

    Google Scholar 

  • Macknight, A.D.C., Leaf, A., Civan, M.M. 1970. Vasopressin: Evidence for the cellular site of the induced permeability change.Biochim. Biophys. Acta 222:560

    PubMed  Google Scholar 

  • Macknight, A.D.C., Leaf, A., Civan, M.M. 1971b. Effects of vasopressin on the water and ionic composition of toad bladder epithelial cells.J. Membrane Biol. 6:127

    Google Scholar 

  • McIver, D.J., Macknight, A.D.C. 1974. Extracellular space in some isolated tissues.J. Physiol. 239:31

    PubMed  Google Scholar 

  • Mendoza, S.A. 1972., Potassium dependence of base-line and ADH-stimulated sodium transport in toad bladder.Am. J. Physiol. 223:120

    PubMed  Google Scholar 

  • Reuss, L., Finn, A.L. 1974. Passive electrical properties of toad urinary bladder epithelium.J. Gen. Physiol. 64:1

    PubMed  Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976a. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder I. Effects of different medium potassium concentrations on electrical parameters.J. Membrane Biol. 26:217

    Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976b. Relationships between serosal medium potassium concentration and sodium transport in toad urinary, bladder. III. Exchangeability of epithelial cellular potassium.J Membrane Biol. 26:269

    Google Scholar 

  • Schultz, S.G., Frizzell, R.A., Nellans H.N. 1974. Ion transport by mammalian small intestine.Annu. Rev. Physiol. 36:51

    Google Scholar 

  • Skou, J.C. 1965. Enzymatic basis for active transport of Na+ and K+ across cell membrane.Physiol. Rev. 45:596

    PubMed  Google Scholar 

  • Ussing, H.H. 1965. Relationship between osmotic reactions and active sodium transport in the frog skin epithelium.Acta Physiol. Scand. 63:141

    PubMed  Google Scholar 

  • Ussing, H.H., Erlij, D., Lassen, U. 1974. Transport pathways in biological membranes.Annu. Rev. Physiol. 36:17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, B.A., Macknight, A.D.C. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder. J. Membrain Biol. 26, 239–268 (1976). https://doi.org/10.1007/BF01868876

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868876

Keywords

Navigation