Advertisement

Journal of Insect Behavior

, Volume 8, Issue 1, pp 47–66 | Cite as

Territorial behavior of the red admiral,Vanessa atalanta (Lepidoptera: Nymphalidae) I. The role of climatic factors and early interaction frequency on territorial start time

  • Royce J. Bitzer
  • Kenneth C. Shaw
Article

Abstract

We examined the relative importance of climatic factors and population density to territorial start time ofVanessa atalanta males. Start time varies with solar altitude and therefore with seasons. We removed seasonal effects by converting start times to corresponding solar altitudes. Start time solar altitude correlates primarily with ambient temperature (Ta) and secondarily with substrate temperature (Ts), regardless of cloud cover. Overcast cloud cover resulted in later not earlier start times as expected from reduced solar radiation (R) levels. R may affect start time indirectly by affectingTs and later start times under overcast skies may be a result ofTs. Start times under solid overcast but not under broken overcast were different than under clear skies, suggesting thatV. atalanta males can use dim sun or blue patches in broken overcast as a start time cue. Early interaction frequency is correlated withTa and wind direction, but not with start time itself, suggesting that male population density is unimportant compared with climatic factors. We conclude thatV. atalanta has a climate-dependent start time but, also, that maintaining a relatively fixed daily schedule is more important to males than is achieving an optimal body temperature while perching.

Key words

Vanessa atalanta Nymphalidae daily activity schedule start time territorial behavior behavioral thermoregulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcock, J. (1985). Hilltopping in the nymphalid butterflyChlosyne california (Lepidoptera).Am. Midl. Nat. 113 69–75.Google Scholar
  2. Alcock, J., and O'Neill, K. M. (1986). Density-dependent mating tactics in the Grey Hairstreak,Strymon melinus (Lepidoptera: Lycaenidae).J. Zool., Lond. 209 105–113.Google Scholar
  3. Baker, R. R. (1972). Territorial behavior of the mymphalid butterfliesAglais urticae andInachis io (L.).J. Anim. Ecol. 41 453–469.Google Scholar
  4. Bitzer, R. J. and Shaw, K. C. (1979). Territorial behavior of the Red Admiral,Vanessa atalanta (L.) (Lepidoptera: Nymphalidae).J. Res. Lepid. 18 36–49.Google Scholar
  5. Bitzer, R. J., and Shaw, K. C. (1983). Territorial behavior ofNymphalis antiopa andPolygonia comma (Nymphalidae).J. Lepid. Soc. 37 1–13.Google Scholar
  6. Brown, W. D., and Alcock, J. (1991). Hilltopping by the red admiral butterfly: Mate searching alongside congeners.J. Res. Lepid. 29 1–10.Google Scholar
  7. Campbell, G. S. (1977).An Introduction to Environmental Biophysics, Springer-Verlag, New York.Google Scholar
  8. Clench, H. K. (1966). Behavioral thermoregulation in butterflies.Ecology 47 1021–1034.Google Scholar
  9. Davies, N. B. (1978). Territorial defence in the speckled wood butterfly,Pararge aegeria: The resident always wins.Anim. Behav. 26 138–147.Google Scholar
  10. Dennis, R. L. H. (1982). Mate location strategies in the wall brown butterfly,Lasiommata megera L. (Lepidoptera: Satyridae). Wait or seek?Entomol. Rec. J. Var. 94 209–214;95: 7–10.Google Scholar
  11. Dennis, R. L. H., and Williams, W. R. (1987). Mate-locating behaviour of the large skipper butterflyOchlodes venata: Flexible strategies and spatial components.J. Lepid. Soc. 41 45–64.Google Scholar
  12. Gaugler, R., and Schutz, S. (1989). Environmental influences on hovering behavior ofTabanus nigrovittatus andT. conterminus (Diptera: Tabanidae).J. Insect Behav. 2 775–786.CrossRefGoogle Scholar
  13. Heinrich, B. (1981).Insect Thermoregulation, John Wiley and Sons, New York.Google Scholar
  14. Heinrich, B. (1986). Comparative thermoregulation of four montane butterflies of different mass.Physiol. Zool. 59 616–626.Google Scholar
  15. Iwasa, Y., and Obara, Y. (1989). A game model for the daily activity schedule of the male butterfly.J. Insect Behav. 2 589–608.Google Scholar
  16. Krogh, A., and Zeuthen, E. (1941). The mechanism of flight preparation in some insects.J. Exp. Biol. 18 1–10.Google Scholar
  17. Larsen, T. B. (1993). Butterfly mass transit.Nat. Hist. 102 30–39.Google Scholar
  18. Monteith, J. L., and Unsworth, M. H. (1990).Principles of Environmental Physics, 2nd ed., Edward Arnold, London.Google Scholar
  19. Nautical Almanac Office, U.S. Naval Observatory (1987–1991).The Astronomical Almanac for the Year(s) 1987–1991, U.S. Government Printing Office, Washington, DC.Google Scholar
  20. Polcyn, D. M., and Chappell, M. A. (1986). Analysis of heat transfer inVanessa butterflies: Effects of wing position and orientation to wind and light.Physiol. Zool. 59 706–716.Google Scholar
  21. Rutowski, R. L. (1991). The evolution of male mate-locating behavior in butterflies.Am. Nat. 138 1121–1139.CrossRefGoogle Scholar
  22. Rutowski, R. L., Dickinson, J. L., and Terkanian, B. (1991). Behavior of male Desert Hackberry Butterflies,Asterocampa leilia (Nymphalidae) at perching sites used in mate location.J. Res. Lepid. 30 129–139.Google Scholar
  23. Scott, J. A. (1974). Mate-locating behavior of butterflies.Am. Midl. Nat. 91 103–117.Google Scholar
  24. Shields, O. (1967). Hilltopping.J. Res. Lepid. 11 99–127.Google Scholar
  25. Shreeve, T. G. (1984). Habitat selection, mate location and microclimatic constraints on the activity of the speckled wood butterfly,Pararge aegeria. Oikos 42 371–377.Google Scholar
  26. Swanson, H. F. (1979).Butterfly Revelations, Rollins Press, Orlando, FL.Google Scholar
  27. Tsuji, J. S., Kingsolver, J. G., and Watt, W. B. (1986). Thermal physiological ecology ofColias butterflies in flight.Oecologia 69 161–170.CrossRefGoogle Scholar
  28. Vielmetter, W. (1958). Physiologie des Verhaltens zur Sonnenstrahlung bei dem TagfalterArgynnis paphia L. I. Untersuchungen im Freiland. (Physiology of the reaction to solar radiation by the butterflyArgynnis paphia L. I. Investigations in the field.)J. Insect Physiol. 2 13–37.Google Scholar
  29. Wickman, P.-O. (1985a). The influence of temperature on the territorial and mate locating behaviour of the small heath butterfly,Coenonympha pamphilus (L.) (Lepidoptera: Satyridae).Behav. Ecol. Socibiol. 16 233–238.CrossRefGoogle Scholar
  30. Wickman, P.-O. (1985b). Territorial defence and mating success in males of the small heath butterfly,Coenonympha pamphilus (L.) (Lepidoptera: Satyridae).Anim. Behav. 33 1162–1168.Google Scholar
  31. Wickman, P.-O. (1988). Dynamics of mate-searching behavior in a hilltopping butterfly,Lasiommata megera (L.): The effects of weather and male density.Zool. J. Linn. Soc. 93 357–377.Google Scholar
  32. Wickman, P.-O., and Wiklund, C. (1983). Territorial defence and its seasonal decline in the speckled wood butterfly(Pararge aegeria).Anim. Behav. 31 1206–1216.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Royce J. Bitzer
    • 1
  • Kenneth C. Shaw
    • 1
  1. 1.Department of Zoology and GeneticsIowa State UniversityAmes

Personalised recommendations