Skip to main content
Log in

The baseline construction and its influence on the measurement of heat with differential scanning calorimeters

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

In DSC's the shape of the interpolated baseline under a peak is determined by a change in the heat capacity of the sample and the heat transfer characteristics between sample and temperature sensor. The interpolated baseline is constructed according to formal criteria, experimentally or analytically on the basis of physico-chemical assumptions on the change of the heat capacity during transition. By the example of the melting of ice this paper shows analytically on the basis of a simple calorimeter model and a synthetic measuring curve, and experimentally, that the uncertainty of the enthalpy determination depends in general on the type of baseline and is in the order of magnitude of the repeatability of the DSC's (±0.5%).

Zusammenfassung

In Differential-Scanning Kalorimetern wird die Gestalt der interpolierten Basislinie unter dem Peak durch eine Änderung der Wärmekapazität der Probe und die Wärmetransportcharakteristik zwischen Probe und Temperaturfühler bestimmt. Die interpolierte Basislinie wird nach formellen Kriterien konstruiert, experimentell oder analytisch auf der Grundlage von physikalisch-chemischen Annahmen für die Änderung der Wärmekapazität während des Überganges. Anhand des Beispieles schmelzendes Eis zeigt vorliegende Arbeit auf der Grundlage eines einfachen Kalorimetermodelles und einer synthetischen Meßkurve analytisch sowie experimentell, daß die Ungenauigkeit der Enthalpiebestimmung unter anderem von der Art der Basislinie abhängt und daß ihr Wert in die Größenordnung der Reproduzierbarkeit von Differential-Scanning Kalorimetern liegt (0.5%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. F. Hemminger and H. K. Cammenga, ’Methoden der Thermischen Analyse’, Berlin, Springer 1989.

    Google Scholar 

  2. G. Adam and F. H. Müller, Kolloid Z. Z. Polym., 192 (1963) 29.

    Google Scholar 

  3. A. Engelter, Kolloid Z. Z. Polym., 205 (1965) 102.

    Google Scholar 

  4. J. P. Dumas, J. Phys. D.: Appl. Phys., 11 (1978) 1.

    Google Scholar 

  5. J. C. Van Miltenburg and M. A. Cuevas-Diarte, Thermochim. Acta 156 (1989) 291.

    Google Scholar 

  6. C. M. Guttman and J. H. Flynn, Anal. Chem., 45 (1973) 408.

    Google Scholar 

  7. W. P. Brennan, B. Miller and J. C. Whitwell, Ind. Eng. Chem. Fundam., 8 (1969) 314.

    Google Scholar 

  8. A. Doelman, A. R. Gregges and E. M. Barrall II, Analytical Calorimetry, Vol. 4, R. S. Porter, J. F. Johnson (Eds.), New York, Plenum Press 1977, p. 1–18.

    Google Scholar 

  9. J. Šesták, Wilson and Wilson's Comprehensive Analytical Chemistry, Vol. XII ’Thermal Analysis’, Part D, Amsterdam, Elsevier 1984, p. 310.

    Google Scholar 

  10. W. Hemminger and G. Höhne, Grundlagen der Kalorimetrie, Verlag Chemie, Weinheim, New York 1979.

    Google Scholar 

  11. G. B. Adams, Jr., H. L. Johnston and E. C. Kerr, J. Am. Chem. Soc., 74 (1952) 4784.

    Google Scholar 

  12. F. Gronvold, J. Thermal Anal., 13 (1978) 419.

    Google Scholar 

  13. F. Gronvold, Rev. Chim. Min., 11 (1974) 568.

    Google Scholar 

  14. F. Gronvold, Acta Chem. Scand, A 29 (1975) 945.

    Google Scholar 

  15. T. B. Douglas and J. L. Dever, J. Am. Chem. Soc., 76 (1954) 4824.

    Google Scholar 

  16. W. F. Giauque and J. W. Stout, J. Am. Chem. Soc, 58 (1936) 1144.

    Google Scholar 

  17. D. C. Ginnings and G. T. Furukawa, J. Am. Chem. Soc., 75 (1953) 522.

    Google Scholar 

  18. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5th ed. Oxford, Pergamon 1979.

    Google Scholar 

  19. G. W. H. Höhne, Thermochim. Acta, 69 (1983) 175.

    Google Scholar 

  20. S. Sarge, S. Bauerecker and H. K. Cammenga, Thermochim. Acta, 129 (1988) 309.

    Google Scholar 

  21. U. Bandara, J. Thermal Anal., 31 (1986) 1063.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. H. J. Seifert on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemminger, W.F., Sarge, S.M. The baseline construction and its influence on the measurement of heat with differential scanning calorimeters. Journal of Thermal Analysis 37, 1455–1477 (1991). https://doi.org/10.1007/BF01913481

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01913481

Keywords

Navigation