Skip to main content
Log in

Studies in the history and development of thermogravimetry

I. Early development

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

The internationally accepted definition of thermogravimetry is ‘a technique whereby the weight of a substance, in an environment heated or cooled at a controlled rate, is recorded as a function of time or temperature ’ [1]. Thus, it follows that the basic requirements of the technique are a source of heat, the measurement of temperature and a means of weighing.

Zusammenfassung

Die international anerkannte Definition der Thermogravimetrie lautet: “Ein Verfahren, wobei das Gewicht einer Substanz in einer mit kontrollierter Geschwindigkeit aufgeheizten oder abgekühlten Umgebung als Funktion der Zeit oder der Temperatur aufgezeichnet wird” [1]. Daraus folgt, da\ die grundlegenden Voraussetzungen dieses Verfahrens eine WÄrmequelle sowie die Messung von Temperatur und eine Möglichkeit zur Gewichtsbestimmung sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Mackenzie, Talanta, 16 (1969) 1227.

    Article  Google Scholar 

  2. F. Szabadváry, ‘History of Analytical Chemistry’. Pergamon Press, Oxford 1966, Chapters I & II.

    Google Scholar 

  3. The authors are indebted to Mr W. E. Carrington, late of the Division of Materials Applications, National Physical Laboratory (NPL), Teddington, Middx, U.K., for providing information on early electric furnaces from the NPL archives.

  4. W. E. K. Middleton, ‘A History of the Thermometer and its use in Meteorology’, Johns Hopkins, Maryland 1966.

    Google Scholar 

  5. J. Prinsep, Phil. Trans. R. Soc., (1828) 79.

  6. V. Regnault, Ann. Chim. Phys., 4 (1842) 5; 64.

    Google Scholar 

  7. Holborn and Wien, Wied. Ann., 47 (1892) 107.

    Google Scholar 

  8. Holborn and Valentiner, Ann. Phys., 22 (1907) 1.

    Google Scholar 

  9. T. J. Seebeck, Ann. Phys., 6 (1826) 130, 253.

    Google Scholar 

  10. A. C. Becquerel, Ann. Phys., 31 (1826) 371.

    Google Scholar 

  11. C. S. M. Pouillet, C. R. Hebd. Séanc. Acad. Paris, 3 (1836) 782.

    Google Scholar 

  12. A. C. Becquerel, Ann. Chim. Phys., 68 (1863) 49.

    Google Scholar 

  13. M. Avenarius, Ann. Phys., 119 (1863) 406.

    Google Scholar 

  14. T. G. Tait, Trans. R. Soc. Edinb., 27 (1872) 125.

    Google Scholar 

  15. H. L. Le Chatelier, C. R. Hebd. Séanc. Acad. Paris, 102 (1886) 819.

    Google Scholar 

  16. A. Stansfield, Phil. Mag., 46 (1898) 59.

    Google Scholar 

  17. C. W. Siemens, Proc. R. Soc., 19 (1871) 443.

    Google Scholar 

  18. H. L. Le Chatelier, C. R. Hebd. Séanc. Acad. Paris, 114 (1892) 214.

    Google Scholar 

  19. J. R. Partington, ‘Origins and development of Applied Chemistry’, Longmans Green, London 1935, pp. 8,30.

    Google Scholar 

  20. N. Lemery, ‘Cours de Chemie’, 5th Ed., Paris 1675, p. 172.

  21. R. Boyle, Phil. Works, 2 (1738) 388.

    Google Scholar 

  22. J. Black, ‘Experiments upon Magnesia alba, Quicklime and other alcaline substances’, Edinburgh 1756.

  23. A. L. Lavoisier, ‘Traité élémentaire de Chimie’, Paris 1789.

  24. B. Higgins,‘Experiments and observations made with the view of improving the art of composing and applying calcareous cements and of preparing quicklime. Theory of these arts: and specification of the Author's cheap and durable cement; for building incrustation or stuccoing and artificial stone, London 1780.

  25. J. Wedgwood, Phil Trans. R. Soc., 72 (1782) 305.

    Google Scholar 

  26. E. Lovejoy, Clayworker, (1886) [In H. E. Ashley Ind. Eng. Chem., 3 (1911) 91.]

    Google Scholar 

  27. H. L. Le Chatelier, C. R. Hebd. Séanc. Acad. Paris, 104 (1887) 1443. Also: Bull. Soc. Fr. Minér. Cristallogr., 10 (1887) 204.

    Google Scholar 

  28. E. Warburg and T. Ihmori, Ann. Phys. Chem., (neue folge), 24 (1886) 481.

    Google Scholar 

  29. W. Nernst, Z. Elektrochem., 9 (1903) 622.

    Google Scholar 

  30. W. Nernst and E. H. Riesenfeld, Ber. Dt. Chem, Ges., 36 (1903) 2086.

    Google Scholar 

  31. C. Duval, Chim. Analyt., 44 (1962) 191.

    Google Scholar 

  32. Reference 30 p. 2089.

    Google Scholar 

  33. Reference 30 p. 2090.

    Google Scholar 

  34. O. Brill, Z. Allg. Anorg. Chem., 45 (1905) 275.

    Article  Google Scholar 

  35. C. Duval, C. R. Hebd. Séanc. Acad. Paris, 224 (1947) 1824.

    Google Scholar 

  36. L. Erdey, F. Paulik, G. Svehla and G. Liptay, Z. Anal. Chem., 182 (1961) 329.

    Article  Google Scholar 

  37. O. Brill, Ber. Dt. Chem. Ges., 38 (1905) 140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keattch, C.J., Dollimore, D. Studies in the history and development of thermogravimetry. Journal of Thermal Analysis 37, 2089–2102 (1991). https://doi.org/10.1007/BF01905580

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01905580

Keywords

Navigation