Skip to main content

Characterization Techniques for Thermal Analysis

  • Chapter
  • First Online:
Material Characterization Techniques and Applications

Abstract

One of the branches of material characterization is thermal analysis which measures the thermophysical and kinetic properties of materials with temperature. In other words, it studies the response of a material to being heated or cooled. The thermal characteristics can be calculated as a function of temperature or time over a wide temperature range. The aim of this chapter is to demonstrate the connection between temperature and specific physical properties of materials by introducing some important material characterization techniques. The most commonly applied thermal analytical techniques are thermogravimetric analysis, differential scanning calorimetry, and differential thermal analysis which are discussed in this chapter. Thermogravimetric analysis monitors the sample mass compared to time or temperature in a controlled environmental furnace. Differential scanning calorimetry observes heat effects related to phase transitions and chemical reactions as a function of temperature. Lastly, differential thermal analysis can identify and analyze the chemical composition of substances by observing the thermal behavior of a sample during heating. In addition, this chapter covers the history of the aforementioned methods, their mechanism of operation, and example applications focused on biosensing. Finally, the common errors and possible solutions for these techniques are described in the troubleshooting section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Activated carbon

Al2O3:

Aluminum oxide

CNF:

Cellulosic nanofibers

DASM:

Differential adiabatic scanning microcalorimeter

DSC:

Differential scanning calorimetry

DSC–TM:

Simultaneous differential scanning calorimetry thermomicroscopy

DTA:

Differential thermal analysis

IR:

Infrared

IR-heated DSC:

Infrared-heated differential scanning calorimetry

MDSC:

Modulated differential scanning calorimetry

MTMA:

Ethyltrimethylammonium chloride

NAC:

Nanocellulose and activated carbon

NMR:

Nuclear magnetic resonance

PMMA:

Polymethylmethacrylate

PnDSC:

Parallel nanodifferential scanning calorimetry

SMDSC:

Supercooling modulated differential scanning calorimetry

Tc:

Crystallization temperature

Td:

Degradation temperature

Tg:

Glass transition temperature

TGA:

Thermogravimetric analysis

TG–DSC:

Thermogravimetry differential scanning calorimetry

Tl-l:

Liquid–liquid transitions

Tm:

Melting temperature

Ts-s:

Solid–solid transitions

References

  1. C.J. Keattch, D. Dollimore, Studies in the history and development of thermogravimetry. I. Early development. J. Therm. Anal. 37, 2089–2102 (1991)

    Article  Google Scholar 

  2. H.L. le Chatelier, A general statement of the laws of chemical equilibrium. Comptes Rendus 99, 786–789 (1884)

    Google Scholar 

  3. W.C. Roberts-Austen, Historical Paper.

    Google Scholar 

  4. H.M. Ng, N.M. Saidi, F.S. Omar, K. Ramesh, S. Ramesh, S. Bashir, Thermogravimetric analysis of polymers, Encyclopedia of Polymer Science and Technology (2002), pp. 1–29

    Google Scholar 

  5. K.H.-T.S.R. of the T. I. University and undefined 1915, On a thermobalance. ci.nii.ac.jp

    Google Scholar 

  6. S.L. Boersma, A theory of differential thermal analysis and new methods of measurement and interpretation. J. Am. Ceram. Soc. 38(8), 281–284 (1955). https://doi.org/10.1111/j.1151-2916.1955.tb14945.x

    Article  Google Scholar 

  7. E.S. Watson, M.J. O’Neill, J. Justin, N. Brenner, A differential scanning calorimeter for quantitative differential thermal analysis. Anal. Chem. 36(7), 1233–1238 (1964). https://doi.org/10.1021/ac60213a019

    Article  Google Scholar 

  8. R.C. Mackenzie, Thermochimica ACTA, Thermochim. Acta 73(3), 1984 (1984)

    Google Scholar 

  9. M. Wagner, Thermal Analysis in Practice: Fundamental Aspects (Carl Hanser Verlag GmbH Co KG, 2017)

    Google Scholar 

  10. J.D. Menczel, R.B. Prime, Thermal Analysis of Polymers: Fundamentals and Applications (Wiley, 2009)

    Google Scholar 

  11. R. Bottom, Thermogravimetric analysis. Principles Appl. Thermal Anal. 3, 87–118 (2008)

    Article  Google Scholar 

  12. P.J. Haines, Thermal Methods of Analysis: Principles, Applications and Problems (Springer Science & Business Media, 2012)

    Google Scholar 

  13. R.S. Mikhail, E. Robens, Microstructure and Thermal Analysis of Solid Surfaces (1983)

    Google Scholar 

  14. L.E. Nielsen, Mechanical Properties of Polymers, Reinhold Pub (Corp, NY, 1962)

    Google Scholar 

  15. O.T. Sørensen, J. Rouquerol, in Sample Controlled Thermal Analysis: Origin, Goals, Multiple Forms, Applications and Future, vol. 3 (Springer Science & Business Media, 2003)

    Google Scholar 

  16. S. Materazzi, S. Vecchio, Evolved gas analysis by infrared spectroscopy. Appl. Spectrosc. Rev. 45(4), 241–273 (2010)

    Article  ADS  Google Scholar 

  17. M. Wagner, Thermogravimetric analysis, in Thermal Analysis in Practice: Fundamental Aspects, 2018, pp. 162–186. https://doi.org/10.3139/9781569906446.010

  18. M.S. Hamid Akash, K. Rehman, Thermo gravimetric analysis, in Essentials of Pharmaceutical Analysis, 2020, pp. 215–222

    Google Scholar 

  19. O.O. Olatunji, S.A. Akinlabi, M.P. Mashinini, S.O. Fatoba, O.O. Ajayi, Thermo-gravimetric characterization of biomass properties: a review, in IOP Conference Series: Materials Science and Engineering, vol. 423 (2018). https://doi.org/10.1088/1757-899X/423/1/012175

  20. Q.-V. Bach, W.-H. Chen, Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state-of-the-art review. Biores. Technol. 246, 88–100 (2017)

    Article  Google Scholar 

  21. F.B. Emre et al., A benzimidazole-based conducting polymer and a PMMA-clay nanocomposite containing biosensor platform for glucose sensing. Synth. Met. 207, 102–109 (2015). https://doi.org/10.1016/j.synthmet.2015.06.015

    Article  Google Scholar 

  22. E. Pindelska, A. Sokal, W. Kolodziejski, Pharmaceutical cocrystals, salts and polymorphs: advanced characterization techniques. Adv. Drug Deliv. Rev. 117, 11–146 (2017)

    Article  Google Scholar 

  23. A. Sobhan, K. Muthukumarappan, Z. Cen, L. Wei, Characterization of nanocellulose and activated carbon nanocomposite films’ biosensing properties for smart packaging. Carbohydr. Polym. 225, 115189 (2019)

    Google Scholar 

  24. E.M. Cahill et al., Metallic microneedles with interconnected porosity: a scalable platform for biosensing and drug delivery. Acta Biomater. 80, 401–411 (2018)

    Article  Google Scholar 

  25. A. Fortunato, in DSC: history, instruments and devices (Woodhead Publishing Limited, 2013).https://doi.org/10.1533/9781908818348.169

  26. M. Wagner, A brief history of thermal analysis, in Thermal Analysis in Practice: Fundamental Aspects (2018), pp. 16–18. https://doi.org/10.3139/9781569906446.002

  27. M.H. Chiu, E.J. Prenner, Differential scanning calorimetry: an invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J. Pharm. Bioall Sci. 3(1), 39–59 (2011). https://doi.org/10.4103/0975-7406.76463

    Article  Google Scholar 

  28. S. Ebnesajjad, C. Ebnesajjad, in Surface Treatment of Materials for Adhesive Bonding (William Andrew, 2013)

    Google Scholar 

  29. P. Gabbott, in Principles and Applications of Thermal Analysis (Wiley, 2008)

    Google Scholar 

  30. C. Leyva-Porras et al., Application of differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC) in food and drug industries. Polymers 12(1), 5 (2020)

    Article  Google Scholar 

  31. J. Drzeżdżon, D. Jacewicz, A. Sielicka, L. Chmurzyński, Characterization of polymers based on differential scanning calorimetry based techniques. TrAC, Trends Anal. Chem. 110, 51–56 (2019)

    Article  Google Scholar 

  32. G.P. Ashton, E.L. Charsley, L.P. Harding, G.M.B. Parkes, Applications of a simultaneous differential scanning calorimetry–thermomicroscopy system. J. Therm. Anal. Calorim. 1–9 (2021)

    Google Scholar 

  33. M. Chountoulesi, N. Naziris, N. Pippa, S. Pispas, C. Demetzos, Differential scanning calorimetry (DSC): An invaluable tool for the thermal evaluation of advanced chimeric liposomal drug delivery nanosystems, in Thermodynamics and Biophysics of Biomedical Nanosystems (Springer, 2019), pp. 297–337

    Google Scholar 

  34. J. Wen, K. Arthur, L. Chemmalil, S. Muzammil, J. Gabrielson, Y. Jiang, Applications of differential scanning calorimetry for thermal stability analysis of proteins: qualification of DSC. J. Pharm. Sci. 101(3), 955–964 (2012)

    Article  Google Scholar 

  35. P. Gill, T.T. Moghadam, B. Ranjbar, Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol. Tech. JBT 21(4), 167 (2010)

    Google Scholar 

  36. S.-D. Clas, C.R. Dalton, B.C. Hancock, Differential scanning calorimetry: applications in drug development. Pharm. Sci. Technol. Today 2(8), 311–320 (1999)

    Article  Google Scholar 

  37. G. Bruylants, J. Wouters, C. Michaux, Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr. Med. Chem. 12(17), 2011–2020 (2005)

    Article  Google Scholar 

  38. J.M. Sturtevant, Biochemical applications of differential scanning calorimetry. Annu. Rev. Phys. Chem. 38(1), 463–488 (1987)

    Article  ADS  Google Scholar 

  39. R.I.M. Almoselhy, Applications of differential scanning calorimetry (DSC) in oils and fats research. a review. Am. Res. J. Agric. 6(1), 1–9 (2020)

    Google Scholar 

  40. Y. Zhang, Z. Chen, X. Liu, J. Shi, H. Chen, Y. Gong, SEM, FTIR and DSC investigation of collagen hydrolysate treated degraded leather. J. Cult. Herit. 48, 205–210 (2021)

    Article  Google Scholar 

  41. R. Vaskoska, et al., Thermal denaturation of proteins in the muscle fibre and connective tissue from bovine muscles composed of type I (masseter) or type II (cutaneous trunci) fibres: DSC and FTIR microspectroscopy study. Food Chem. 343, 128544 (2021)

    Google Scholar 

  42. K.A. Okotrub, I.V. Zaytseva, S.V. Adichtchev, N.V. Surovtsev, Raman spectroscopy and DSC assay of the phase coexistence in binary DMPC/cholesterol multilamellar vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes 1863(2) 183514 (2021)

    Google Scholar 

  43. M.S. Reza, S.N. Islam, S. Afroze, M.S.A. Bakar, J. Taweekun, A.K. Azad, Data on FTIR, TGA–DTG, DSC of invasive Pennisetum purpureum grass. Data Brief 30, 105536 (2020)

    Google Scholar 

  44. P. Saganowska, M. Wesolowski, DSC as a screening tool for rapid co-crystal detection in binary mixtures of benzodiazepines with co-formers. J. Therm. Anal. Calorim. 133(1), 785–795 (2018)

    Article  Google Scholar 

  45. G. Klančnik, J. Medved, P. Mrvar, Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) as a method of material investigation Diferenčna termična analiza (DTA) in diferenčna vrstična kalorimetrija (DSC) kot metoda za raziskavo materialov, RMZ–Mater. Geoenvironment 57(1), 127–142 (2010)

    Google Scholar 

  46. P.J. Haines, M. Reading, F.W. Wilburn, Differential thermal analysis and differential scanning calorimetry, in Handbook of Thermal Analysis and Calorimetry, vol. 1 (Elsevier, 1998), pp. 279–361

    Google Scholar 

  47. M. Kawuloková et al., Study of equilibrium and nonequilibrium phase transformations temperatures of steel by thermal analysis methods. J. Therm. Anal. Calorim. 127(1), 423–429 (2017)

    Article  Google Scholar 

  48. G.O. Piloyan, I.D. Ryabchikov, O.S. Novikova, Determination of activation energies of chemical reactions by differential thermal analysis. Nature 212(5067), 1229 (1966)

    Article  ADS  Google Scholar 

  49. G. Vuataz, V. Meunier, J.C. Andrieux, TG–DTA approach for designing reference methods for moisture content determination in food powders. Food Chem. 122(2), 436–442 (2010)

    Article  Google Scholar 

  50. N. Raje, D.A. Aacherekar, A.V.R. Reddy, Compositional characterization of carbon electrode material: a study using simultaneous TG–DTA–FTIR. Thermochim. Acta 496(1–2), 143–150 (2009)

    Article  Google Scholar 

  51. J.A. Teixeira, W.D.G. Nunes, R.P. Fernandes, A. do Nascimento, F.J. Caires, M. Ionashiro, Thermal behavior in oxidative and pyrolysis conditions and characterization of some metal p-aminobenzoate compounds using TG–DTA, EGA and DSC-photovisual system. J. Anal. Appl. Pyroly. 128, 261–267 (2017)

    Google Scholar 

  52. C. Ayrault, J.S. Chang, D. Ewing, J.S. Cotton, I.E. Gerges, J. Burgers, Differential thermal analysis, thermal gravimetric analysis, and solid phase micro-extraction gas chromatography analysis of water and fuel absorption in diesel soot. J. Aerosol Sci. 41(2), 237–241 (2010)

    Article  ADS  Google Scholar 

  53. M. Pigłowska, B. Kurc, Ł Rymaniak, P. Lijewski, P. Fuć, Kinetics and thermodynamics of thermal degradation of different starches and estimation the OH group and H2O content on the surface by TG/DTG-DTA. Polymers 12(2), 357 (2020)

    Article  Google Scholar 

  54. P.B. Arab, T.P. Araújo, O.J. Pejon, Identification of clay minerals in mixtures subjected to differential thermal and thermogravimetry analyses and methylene blue adsorption tests. Appl. Clay Sci. 114, 133–140 (2015)

    Article  Google Scholar 

  55. Y. Tian, X. Xu, Z. Xie, J. Zhao, Z. Jin, Starch retrogradation determined by differential thermal analysis (DTA). Food Hydrocolloids 25(6), 1637–1639 (2011)

    Article  Google Scholar 

  56. D.C. Lago, M.O. Prado, Dehydroxilation and crystallization of glasses: a DTA study. J. Non-Cryst. Solids 381, 12–16 (2013)

    Article  ADS  Google Scholar 

  57. P. Gabbot, T. Mann, Differential scanning calorimetry, in Principles of Thermal Analysis and Calorimetry (2016), pp. 67–103

    Google Scholar 

  58. A.M. Zambrano Arévalo, G.C. Castellar Ortega, W.A. Vallejo Lozada, I.E. Piñeres Ariza, M.M. Cely Bautista, J.S. Valencia Ríos, Conceptual approach to thermal analysis and its main applications. Prospectiva 15(2), 117–125 (2017)

    Google Scholar 

  59. M.E. Brown, Differential thermal analysis (DTA) and differential scanning calorimetry (DSC), in Introduction to THERMAL Analysis (Springer, 1988), pp. 23–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Hosseini .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hosseinian, H., Ortiz Ortega, E., Aguilar Meza, I.B., Rodríguez Vera, A., Rosales López, M.J., Hosseini, S. (2022). Characterization Techniques for Thermal Analysis. In: Material Characterization Techniques and Applications. Progress in Optical Science and Photonics, vol 19. Springer, Singapore. https://doi.org/10.1007/978-981-16-9569-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9569-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9568-1

  • Online ISBN: 978-981-16-9569-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics